Sachant que
\((m)\) est la médiatrice de \([CD]\),
\((m')\) est la médiatrice de \([DE]\) et que
\(M\) est à l'intersection de \((m)\) et de \((m')\)
{"init": {"range": [[-10, 10], [-10, 10]], "scale": [35, 35]}, "line": [[[-10.0, -10.0], [10.0, -10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -9.0], [10.0, -9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -8.0], [10.0, -8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -7.0], [10.0, -7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -6.0], [10.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -5.0], [10.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -4.0], [10.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -3.0], [10.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -2.0], [10.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -1.0], [10.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 0.0], [10.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 1.0], [10.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 2.0], [10.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 3.0], [10.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 4.0], [10.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 5.0], [10.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 6.0], [10.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 7.0], [10.0, 7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 8.0], [10.0, 8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 9.0], [10.0, 9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -10.0], [-10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-9.0, -10.0], [-9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-8.0, -10.0], [-8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-7.0, -10.0], [-7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -10.0], [-6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -10.0], [-5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -10.0], [-4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -10.0], [-3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -10.0], [-2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -10.0], [-1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -10.0], [0.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -10.0], [1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -10.0], [2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -10.0], [3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -10.0], [4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -10.0], [5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -10.0], [6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[7.0, -10.0], [7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[8.0, -10.0], [8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[9.0, -10.0], [9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[10.0, -10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.1, -6.0], [-4.9, -6.0], {}], [[-5.0, -6.1], [-5.0, -5.9], {}], [[-5.1, 6.0], [-4.9, 6.0], {}], [[-5.0, 5.9], [-5.0, 6.1], {}], [[-2.1, -5.0], [-1.9, -5.0], {}], [[-2.0, -5.1], [-2.0, -4.9], {}], [[-5.433333333333333, 0.0], [-5.233333333333333, 0.0], {}], [[-5.333333333333333, -0.1], [-5.333333333333333, 0.1], {}], [[-5.0, -6.0], [-5.0, 6.0], {"subtype": "segment"}], [[-5.0, -6.0], [-2.0, -5.0], {"subtype": "segment"}], [[-5.0, 6.0], [-2.0, -5.0], {"subtype": "segment"}], [[10.0, 0.0], [-9.5, 0.0], {"subtype": "line"}], [[-10.0, -1.27273], [9.51761811721087, 4.050261195061627], {"subtype": "line"}]], "label": [[[-5.0, -6.0], "C", "below", {}], [[-5.0, 6.0], "D", "above", {}], [[-2.0, -5.0], "E", "below right", {}], [[-5.333333333333333, 0.0], "M", "above", {}], [[-10.0, 0.0], "(m)", {"subtype": "line"}], [[10.0, 4.18182], "(m')", {"subtype": "line"}]]}
Démontrer que \(MC = ME\).
Si plusieurs blocs "On sait que, or, donc" sont nécessaires, il faut
les écrire à la suite les uns des autres et non imbriqués les uns
dans les autres.