Exercice type Bac de Mathématiques
Partie A
Dans un repère orthonormé \( (O; \vec{i}, \vec{j}, \vec{k}) \) de l'espace, on considère le plan \((P)\) d'équation :
\[-6x - y - z + 23 = 0\]
On consière les trois points \(A\), \(B\) et \(C\) de coordonnées :
\[A(-2 ; 0 ; -3), B(3 ; 2 ; 3), C(3 ; 3 ; 2) \]
Le but de cet exercice est d'étudier le rapport des aires entre un triangle et son projeté orthogonal dans un plan.
On admet l'existence d'un unique point H vérifiant les deux conditions :
\[
\left\{
\begin{array}{l}
H \in (BC) \\
(BC) \perp (HA)
\end{array}
\right.
\]
On donnera la réponse exacte et sous la forme : \(H(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3})\)
Partie B
On admet que les coordonnées du vecteur \(\overrightarrow{HA}\) sont :
\(
\overrightarrow{HA} = \begin{pmatrix}
-5 \\ -4 \\ -4
\end{pmatrix}
\)
Partie C
On admet que \(HA' = \sqrt{19}\)
Déterminer la valeur arrondie de \(\text{cos}(\alpha)\) à \(10^{-3}\) près.
On admet que les droites \((A'H)\) et \((BC)\) sont perpendiculaires.
Déterminer la valeur approchée de \(\text{S}'\) à \(10^{-3}\) près.