On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.646, 0.7939999999999999]], "scale": [6.0, 3040.540540540542], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.66], "0,66", "left", {"font-size": 13}]], "path": [[[[0, 0.72], [100, 0.72]]], [[[1, 0.700472], [1, 0.7037279999999999]], {"stroke": "red"}], [[[0.29999999999999993, 0.7021], [1.7000000000000002, 0.7021]], {"stroke": "red"}], [[[2, 0.717572], [2, 0.7208279999999999]], {"stroke": "red"}], [[[1.2999999999999998, 0.7192], [2.7, 0.7192]], {"stroke": "red"}], [[[3, 0.7076720000000001], [3, 0.710928]], {"stroke": "red"}], [[[2.3, 0.7093], [3.7, 0.7093]], {"stroke": "red"}], [[[4, 0.742472], [4, 0.745728]], {"stroke": "red"}], [[[3.3, 0.7441], [4.7, 0.7441]], {"stroke": "red"}], [[[5, 0.711472], [5, 0.7147279999999999]], {"stroke": "red"}], [[[4.3, 0.7131], [5.7, 0.7131]], {"stroke": "red"}], [[[6, 0.711072], [6, 0.714328]], {"stroke": "red"}], [[[5.3, 0.7127], [6.7, 0.7127]], {"stroke": "red"}], [[[7, 0.720472], [7, 0.7237279999999999]], {"stroke": "red"}], [[[6.3, 0.7221], [7.7, 0.7221]], {"stroke": "red"}], [[[8, 0.717172], [8, 0.720428]], {"stroke": "red"}], [[[7.3, 0.7188], [8.7, 0.7188]], {"stroke": "red"}], [[[9, 0.7258720000000001], [9, 0.729128]], {"stroke": "red"}], [[[8.3, 0.7275], [9.7, 0.7275]], {"stroke": "red"}], [[[10, 0.704872], [10, 0.708128]], {"stroke": "red"}], [[[9.3, 0.7065], [10.7, 0.7065]], {"stroke": "red"}], [[[11, 0.7259720000000001], [11, 0.729228]], {"stroke": "red"}], [[[10.3, 0.7276], [11.7, 0.7276]], {"stroke": "red"}], [[[12, 0.728172], [12, 0.731428]], {"stroke": "red"}], [[[11.3, 0.7298], [12.7, 0.7298]], {"stroke": "red"}], [[[13, 0.706172], [13, 0.709428]], {"stroke": "red"}], [[[12.3, 0.7078], [13.7, 0.7078]], {"stroke": "red"}], [[[14, 0.7006720000000001], [14, 0.703928]], {"stroke": "red"}], [[[13.3, 0.7023], [14.7, 0.7023]], {"stroke": "red"}], [[[15, 0.707172], [15, 0.710428]], {"stroke": "red"}], [[[14.3, 0.7088], [15.7, 0.7088]], {"stroke": "red"}], [[[16, 0.719572], [16, 0.7228279999999999]], {"stroke": "red"}], [[[15.3, 0.7212], [16.7, 0.7212]], {"stroke": "red"}], [[[17, 0.722072], [17, 0.725328]], {"stroke": "red"}], [[[16.3, 0.7237], [17.7, 0.7237]], {"stroke": "red"}], [[[18, 0.7066720000000001], [18, 0.709928]], {"stroke": "red"}], [[[17.3, 0.7083], [18.7, 0.7083]], {"stroke": "red"}], [[[19, 0.7207720000000001], [19, 0.724028]], {"stroke": "red"}], [[[18.3, 0.7224], [19.7, 0.7224]], {"stroke": "red"}], [[[20, 0.7167720000000001], [20, 0.720028]], {"stroke": "red"}], [[[19.3, 0.7184], [20.7, 0.7184]], {"stroke": "red"}], [[[21, 0.7450720000000001], [21, 0.748328]], {"stroke": "red"}], [[[20.3, 0.7467], [21.7, 0.7467]], {"stroke": "red"}], [[[22, 0.727472], [22, 0.7307279999999999]], {"stroke": "red"}], [[[21.3, 0.7291], [22.7, 0.7291]], {"stroke": "red"}], [[[23, 0.6977720000000001], [23, 0.701028]], {"stroke": "red"}], [[[22.3, 0.6994], [23.7, 0.6994]], {"stroke": "red"}], [[[24, 0.7075720000000001], [24, 0.710828]], {"stroke": "red"}], [[[23.3, 0.7092], [24.7, 0.7092]], {"stroke": "red"}], [[[25, 0.746272], [25, 0.749528]], {"stroke": "red"}], [[[24.3, 0.7479], [25.7, 0.7479]], {"stroke": "red"}], [[[26, 0.7136720000000001], [26, 0.716928]], {"stroke": "red"}], [[[25.3, 0.7153], [26.7, 0.7153]], {"stroke": "red"}], [[[27, 0.688372], [27, 0.6916279999999999]], {"stroke": "red"}], [[[26.3, 0.69], [27.7, 0.69]], {"stroke": "red"}], [[[28, 0.701472], [28, 0.7047279999999999]], {"stroke": "red"}], [[[27.3, 0.7031], [28.7, 0.7031]], {"stroke": "red"}], [[[29, 0.735672], [29, 0.7389279999999999]], {"stroke": "red"}], [[[28.3, 0.7373], [29.7, 0.7373]], {"stroke": "red"}], [[[30, 0.7187720000000001], [30, 0.722028]], {"stroke": "red"}], [[[29.3, 0.7204], [30.7, 0.7204]], {"stroke": "red"}], [[[31, 0.7168720000000001], [31, 0.720128]], {"stroke": "red"}], [[[30.3, 0.7185], [31.7, 0.7185]], {"stroke": "red"}], [[[32, 0.711172], [32, 0.714428]], {"stroke": "red"}], [[[31.3, 0.7128], [32.7, 0.7128]], {"stroke": "red"}], [[[33, 0.731572], [33, 0.7348279999999999]], {"stroke": "red"}], [[[32.3, 0.7332], [33.7, 0.7332]], {"stroke": "red"}], [[[34, 0.708272], [34, 0.7115279999999999]], {"stroke": "red"}], [[[33.3, 0.7099], [34.7, 0.7099]], {"stroke": "red"}], [[[35, 0.7257720000000001], [35, 0.729028]], {"stroke": "red"}], [[[34.3, 0.7274], [35.7, 0.7274]], {"stroke": "red"}], [[[36, 0.748372], [36, 0.751628]], {"stroke": "red"}], [[[35.3, 0.75], [36.7, 0.75]], {"stroke": "red"}], [[[37, 0.719572], [37, 0.7228279999999999]], {"stroke": "red"}], [[[36.3, 0.7212], [37.7, 0.7212]], {"stroke": "red"}], [[[38, 0.7027720000000001], [38, 0.706028]], {"stroke": "red"}], [[[37.3, 0.7044], [38.7, 0.7044]], {"stroke": "red"}], [[[39, 0.740272], [39, 0.743528]], {"stroke": "red"}], [[[38.3, 0.7419], [39.7, 0.7419]], {"stroke": "red"}], [[[40, 0.693372], [40, 0.6966279999999999]], {"stroke": "red"}], [[[39.3, 0.695], [40.7, 0.695]], {"stroke": "red"}], [[[41, 0.7127720000000001], [41, 0.716028]], {"stroke": "red"}], [[[40.3, 0.7144], [41.7, 0.7144]], {"stroke": "red"}], [[[42, 0.688372], [42, 0.6916279999999999]], {"stroke": "red"}], [[[41.3, 0.69], [42.7, 0.69]], {"stroke": "red"}], [[[43, 0.7207720000000001], [43, 0.724028]], {"stroke": "red"}], [[[42.3, 0.7224], [43.7, 0.7224]], {"stroke": "red"}], [[[44, 0.724672], [44, 0.7279279999999999]], {"stroke": "red"}], [[[43.3, 0.7263], [44.7, 0.7263]], {"stroke": "red"}], [[[45, 0.7329720000000001], [45, 0.736228]], {"stroke": "red"}], [[[44.3, 0.7346], [45.7, 0.7346]], {"stroke": "red"}], [[[46, 0.7168720000000001], [46, 0.720128]], {"stroke": "red"}], [[[45.3, 0.7185], [46.7, 0.7185]], {"stroke": "red"}], [[[47, 0.726072], [47, 0.729328]], {"stroke": "red"}], [[[46.3, 0.7277], [47.7, 0.7277]], {"stroke": "red"}], [[[48, 0.710072], [48, 0.713328]], {"stroke": "red"}], [[[47.3, 0.7117], [48.7, 0.7117]], {"stroke": "red"}], [[[49, 0.737272], [49, 0.740528]], {"stroke": "red"}], [[[48.3, 0.7389], [49.7, 0.7389]], {"stroke": "red"}], [[[50, 0.722272], [50, 0.725528]], {"stroke": "red"}], [[[49.3, 0.7239], [50.7, 0.7239]], {"stroke": "red"}], [[[51, 0.738472], [51, 0.7417279999999999]], {"stroke": "red"}], [[[50.3, 0.7401], [51.7, 0.7401]], {"stroke": "red"}], [[[52, 0.7208720000000001], [52, 0.724128]], {"stroke": "red"}], [[[51.3, 0.7225], [52.7, 0.7225]], {"stroke": "red"}], [[[53, 0.711972], [53, 0.715228]], {"stroke": "red"}], [[[52.3, 0.7136], [53.7, 0.7136]], {"stroke": "red"}], [[[54, 0.725572], [54, 0.7288279999999999]], {"stroke": "red"}], [[[53.3, 0.7272], [54.7, 0.7272]], {"stroke": "red"}], [[[55, 0.7066720000000001], [55, 0.709928]], {"stroke": "red"}], [[[54.3, 0.7083], [55.7, 0.7083]], {"stroke": "red"}], [[[56, 0.7297720000000001], [56, 0.733028]], {"stroke": "red"}], [[[55.3, 0.7314], [56.7, 0.7314]], {"stroke": "red"}], [[[57, 0.7108720000000001], [57, 0.714128]], {"stroke": "red"}], [[[56.3, 0.7125], [57.7, 0.7125]], {"stroke": "red"}], [[[58, 0.703172], [58, 0.706428]], {"stroke": "red"}], [[[57.3, 0.7048], [58.7, 0.7048]], {"stroke": "red"}], [[[59, 0.712972], [59, 0.716228]], {"stroke": "red"}], [[[58.3, 0.7146], [59.7, 0.7146]], {"stroke": "red"}], [[[60, 0.7036720000000001], [60, 0.706928]], {"stroke": "red"}], [[[59.3, 0.7053], [60.7, 0.7053]], {"stroke": "red"}], [[[61, 0.7157720000000001], [61, 0.719028]], {"stroke": "red"}], [[[60.3, 0.7174], [61.7, 0.7174]], {"stroke": "red"}], [[[62, 0.7035720000000001], [62, 0.706828]], {"stroke": "red"}], [[[61.3, 0.7052], [62.7, 0.7052]], {"stroke": "red"}], [[[63, 0.725272], [63, 0.728528]], {"stroke": "red"}], [[[62.3, 0.7269], [63.7, 0.7269]], {"stroke": "red"}], [[[64, 0.733372], [64, 0.736628]], {"stroke": "red"}], [[[63.3, 0.735], [64.7, 0.735]], {"stroke": "red"}], [[[65, 0.703372], [65, 0.7066279999999999]], {"stroke": "red"}], [[[64.3, 0.705], [65.7, 0.705]], {"stroke": "red"}], [[[66, 0.7176720000000001], [66, 0.720928]], {"stroke": "red"}], [[[65.3, 0.7193], [66.7, 0.7193]], {"stroke": "red"}], [[[67, 0.701072], [67, 0.704328]], {"stroke": "red"}], [[[66.3, 0.7027], [67.7, 0.7027]], {"stroke": "red"}], [[[68, 0.719172], [68, 0.722428]], {"stroke": "red"}], [[[67.3, 0.7208], [68.7, 0.7208]], {"stroke": "red"}], [[[69, 0.728272], [69, 0.731528]], {"stroke": "red"}], [[[68.3, 0.7299], [69.7, 0.7299]], {"stroke": "red"}], [[[70, 0.688372], [70, 0.6916279999999999]], {"stroke": "red"}], [[[69.3, 0.69], [70.7, 0.69]], {"stroke": "red"}], [[[71, 0.722472], [71, 0.7257279999999999]], {"stroke": "red"}], [[[70.3, 0.7241], [71.7, 0.7241]], {"stroke": "red"}], [[[72, 0.714972], [72, 0.718228]], {"stroke": "red"}], [[[71.3, 0.7166], [72.7, 0.7166]], {"stroke": "red"}], [[[73, 0.7277720000000001], [73, 0.731028]], {"stroke": "red"}], [[[72.3, 0.7294], [73.7, 0.7294]], {"stroke": "red"}], [[[74, 0.722172], [74, 0.725428]], {"stroke": "red"}], [[[73.3, 0.7238], [74.7, 0.7238]], {"stroke": "red"}], [[[75, 0.7388720000000001], [75, 0.742128]], {"stroke": "red"}], [[[74.3, 0.7405], [75.7, 0.7405]], {"stroke": "red"}], [[[76, 0.7339720000000001], [76, 0.737228]], {"stroke": "red"}], [[[75.3, 0.7356], [76.7, 0.7356]], {"stroke": "red"}], [[[77, 0.7196720000000001], [77, 0.722928]], {"stroke": "red"}], [[[76.3, 0.7213], [77.7, 0.7213]], {"stroke": "red"}], [[[78, 0.7015720000000001], [78, 0.704828]], {"stroke": "red"}], [[[77.3, 0.7032], [78.7, 0.7032]], {"stroke": "red"}], [[[79, 0.7187720000000001], [79, 0.722028]], {"stroke": "red"}], [[[78.3, 0.7204], [79.7, 0.7204]], {"stroke": "red"}], [[[80, 0.698172], [80, 0.7014279999999999]], {"stroke": "red"}], [[[79.3, 0.6998], [80.7, 0.6998]], {"stroke": "red"}], [[[81, 0.729172], [81, 0.732428]], {"stroke": "red"}], [[[80.3, 0.7308], [81.7, 0.7308]], {"stroke": "red"}], [[[82, 0.718472], [82, 0.7217279999999999]], {"stroke": "red"}], [[[81.3, 0.7201], [82.7, 0.7201]], {"stroke": "red"}], [[[83, 0.7358720000000001], [83, 0.739128]], {"stroke": "red"}], [[[82.3, 0.7375], [83.7, 0.7375]], {"stroke": "red"}], [[[84, 0.7128720000000001], [84, 0.716128]], {"stroke": "red"}], [[[83.3, 0.7145], [84.7, 0.7145]], {"stroke": "red"}], [[[85, 0.733272], [85, 0.736528]], {"stroke": "red"}], [[[84.3, 0.7349], [85.7, 0.7349]], {"stroke": "red"}], [[[86, 0.7148720000000001], [86, 0.718128]], {"stroke": "red"}], [[[85.3, 0.7165], [86.7, 0.7165]], {"stroke": "red"}], [[[87, 0.704872], [87, 0.708128]], {"stroke": "red"}], [[[86.3, 0.7065], [87.7, 0.7065]], {"stroke": "red"}], [[[88, 0.702872], [88, 0.706128]], {"stroke": "red"}], [[[87.3, 0.7045], [88.7, 0.7045]], {"stroke": "red"}], [[[89, 0.736272], [89, 0.739528]], {"stroke": "red"}], [[[88.3, 0.7379], [89.7, 0.7379]], {"stroke": "red"}], [[[90, 0.720272], [90, 0.723528]], {"stroke": "red"}], [[[89.3, 0.7219], [90.7, 0.7219]], {"stroke": "red"}], [[[91, 0.702872], [91, 0.706128]], {"stroke": "red"}], [[[90.3, 0.7045], [91.7, 0.7045]], {"stroke": "red"}], [[[92, 0.748372], [92, 0.751628]], {"stroke": "red"}], [[[91.3, 0.75], [92.7, 0.75]], {"stroke": "red"}], [[[93, 0.722472], [93, 0.7257279999999999]], {"stroke": "red"}], [[[92.3, 0.7241], [93.7, 0.7241]], {"stroke": "red"}], [[[94, 0.7448720000000001], [94, 0.748128]], {"stroke": "red"}], [[[93.3, 0.7465], [94.7, 0.7465]], {"stroke": "red"}], [[[95, 0.7458720000000001], [95, 0.749128]], {"stroke": "red"}], [[[94.3, 0.7475], [95.7, 0.7475]], {"stroke": "red"}], [[[96, 0.7086720000000001], [96, 0.711928]], {"stroke": "red"}], [[[95.3, 0.7103], [96.7, 0.7103]], {"stroke": "red"}], [[[97, 0.7197720000000001], [97, 0.723028]], {"stroke": "red"}], [[[96.3, 0.7214], [97.7, 0.7214]], {"stroke": "red"}], [[[98, 0.707972], [98, 0.711228]], {"stroke": "red"}], [[[97.3, 0.7096], [98.7, 0.7096]], {"stroke": "red"}], [[[99, 0.703372], [99, 0.7066279999999999]], {"stroke": "red"}], [[[98.3, 0.705], [99.7, 0.705]], {"stroke": "red"}], [[[100, 0.7330720000000001], [100, 0.736328]], {"stroke": "red"}], [[[99.3, 0.7347], [100.7, 0.7347]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir
la valeur exacte la plus proche parmis les choix suivant.