Transformations - 5e

Symétries axiales

Exercice 1 : Exercice de construction - symétrie axiale/médiatrice

Tracer deux cercles de même rayon qui se coupent en M et en N.
Nommer les centres de ces cercles respectivement A et B.
Tracer le segment [AB].
Tracer la droite (MN).

Que peut-on dire de la droite (MN) ?

Exercice 2 : Tracer les symétriques de points

Construire les symétriques des points A, B, C et D par rapport à l'axe \((d)\).

Exercice 3 : Tracer la symétrie axiale d'un triangle

Tracer la symétrie axiale du triangle ABC par rapport à l'axe.

Exercice 4 : Tracer les symétries axiale d'une figure

Compléter le schéma afin que les droites \( (d1) \) et \( (d2) \) soient des axes de symétrie de la figure.
On n'ajoutera pas d'élément dans la partie contenant la figure initiale.

Exercice 5 : Trouver les situations de symétrie axiale, où B est le symétrique de A par rapport à (d).

Parmi les figures suivantes, lesquelles correspondent à une situation de symétrie axiale, où B est le symétrique de A par rapport à (d).
  • A.
    {"init": {"range": [[-1, 6], [-1, 6]]}, "line": [[[0, 0], [0, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[1, 0], [1, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[2, 0], [2, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[3, 0], [3, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[4, 0], [4, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[5, 0], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 0], [5, 0], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1], [5, 1], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 2], [5, 2], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 3], [5, 3], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 4], [5, 4], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 5], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1.0], [4.0, 5], {"stroke-width": 2, "stroke": "#6495ED"}]], "label": [[[1, 3], "A", "above", {"color": "#6495ED"}], [[2, 2], "B", "above", {"color": "#6495ED"}], [[0, 1.0], "(d)", "above", {"color": "#6495ED"}]], "circle": [[[1, 3], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}], [[2, 2], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}]]}
  • B.
    {"init": {"range": [[-1, 6], [-1, 6]]}, "line": [[[0, 0], [0, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[1, 0], [1, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[2, 0], [2, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[3, 0], [3, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[4, 0], [4, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[5, 0], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 0], [5, 0], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1], [5, 1], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 2], [5, 2], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 3], [5, 3], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 4], [5, 4], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 5], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[5, 2.5], [0, 2.5], {"stroke-width": 2, "stroke": "#6495ED"}]], "label": [[[2, 3], "A", "above", {"color": "#6495ED"}], [[2, 2], "B", "above", {"color": "#6495ED"}], [[5, 2.5], "(d)", "above", {"color": "#6495ED"}]], "circle": [[[2, 3], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}], [[2, 2], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}]]}
  • C.
    {"init": {"range": [[-1, 6], [-1, 6]]}, "line": [[[0, 0], [0, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[1, 0], [1, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[2, 0], [2, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[3, 0], [3, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[4, 0], [4, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[5, 0], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 0], [5, 0], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1], [5, 1], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 2], [5, 2], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 3], [5, 3], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 4], [5, 4], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 5], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[5, 2.5], [0, 2.5], {"stroke-width": 2, "stroke": "#6495ED"}]], "label": [[[3, 2], "A", "above", {"color": "#6495ED"}], [[5, 3], "B", "above", {"color": "#6495ED"}], [[5, 2.5], "(d)", "above", {"color": "#6495ED"}]], "circle": [[[3, 2], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}], [[5, 3], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}]]}
  • D.
    {"init": {"range": [[-1, 6], [-1, 6]]}, "line": [[[0, 0], [0, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[1, 0], [1, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[2, 0], [2, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[3, 0], [3, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[4, 0], [4, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[5, 0], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 0], [5, 0], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1], [5, 1], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 2], [5, 2], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 3], [5, 3], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 4], [5, 4], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 5], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[2.5, 0], [2.5, 5], {"stroke-width": 2, "stroke": "#6495ED"}]], "label": [[[2, 2], "A", "above", {"color": "#6495ED"}], [[3, 3], "B", "above", {"color": "#6495ED"}], [[2.5, 0], "(d)", "above", {"color": "#6495ED"}]], "circle": [[[2, 2], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}], [[3, 3], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}]]}
False