L’intervalle de fluctuation avec la loi binomiale
Échantillonnage - Mathématiques 2de
Exercice 1 : Échantillonnage et intervalle de fluctuation
On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.25, 0.39]], "scale": [6.0, 3214.2857142857138], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.25], "0,25", "left", {"font-size": 13}], [[0.20000000000000018, 0.26], "0,26", "left", {"font-size": 13}]], "path": [[[[0, 0.32], [100, 0.32]]], [[[1, 0.27266], [1, 0.27574]], {"stroke": "red"}], [[[0.29999999999999993, 0.2742], [1.7000000000000002, 0.2742]], {"stroke": "red"}], [[[2, 0.33226], [2, 0.33533999999999997]], {"stroke": "red"}], [[[1.2999999999999998, 0.3338], [2.7, 0.3338]], {"stroke": "red"}], [[[3, 0.32456], [3, 0.32764]], {"stroke": "red"}], [[[2.3, 0.3261], [3.7, 0.3261]], {"stroke": "red"}], [[[4, 0.32726], [4, 0.33033999999999997]], {"stroke": "red"}], [[[3.3, 0.3288], [4.7, 0.3288]], {"stroke": "red"}], [[[5, 0.33986], [5, 0.34293999999999997]], {"stroke": "red"}], [[[4.3, 0.3414], [5.7, 0.3414]], {"stroke": "red"}], [[[6, 0.32876], [6, 0.33183999999999997]], {"stroke": "red"}], [[[5.3, 0.3303], [6.7, 0.3303]], {"stroke": "red"}], [[[7, 0.28826], [7, 0.29134]], {"stroke": "red"}], [[[6.3, 0.2898], [7.7, 0.2898]], {"stroke": "red"}], [[[8, 0.29596], [8, 0.29904]], {"stroke": "red"}], [[[7.3, 0.2975], [8.7, 0.2975]], {"stroke": "red"}], [[[9, 0.33856], [9, 0.34164]], {"stroke": "red"}], [[[8.3, 0.3401], [9.7, 0.3401]], {"stroke": "red"}], [[[10, 0.30156], [10, 0.30463999999999997]], {"stroke": "red"}], [[[9.3, 0.3031], [10.7, 0.3031]], {"stroke": "red"}], [[[11, 0.27046000000000003], [11, 0.27354]], {"stroke": "red"}], [[[10.3, 0.272], [11.7, 0.272]], {"stroke": "red"}], [[[12, 0.29316000000000003], [12, 0.29624]], {"stroke": "red"}], [[[11.3, 0.2947], [12.7, 0.2947]], {"stroke": "red"}], [[[13, 0.35556], [13, 0.35863999999999996]], {"stroke": "red"}], [[[12.3, 0.3571], [13.7, 0.3571]], {"stroke": "red"}], [[[14, 0.33226], [14, 0.33533999999999997]], {"stroke": "red"}], [[[13.3, 0.3338], [14.7, 0.3338]], {"stroke": "red"}], [[[15, 0.26986], [15, 0.27293999999999996]], {"stroke": "red"}], [[[14.3, 0.2714], [15.7, 0.2714]], {"stroke": "red"}], [[[16, 0.32006], [16, 0.32314]], {"stroke": "red"}], [[[15.3, 0.3216], [16.7, 0.3216]], {"stroke": "red"}], [[[17, 0.29026], [17, 0.29334]], {"stroke": "red"}], [[[16.3, 0.2918], [17.7, 0.2918]], {"stroke": "red"}], [[[18, 0.29756], [18, 0.30063999999999996]], {"stroke": "red"}], [[[17.3, 0.2991], [18.7, 0.2991]], {"stroke": "red"}], [[[19, 0.33186], [19, 0.33493999999999996]], {"stroke": "red"}], [[[18.3, 0.3334], [19.7, 0.3334]], {"stroke": "red"}], [[[20, 0.31296], [20, 0.31604]], {"stroke": "red"}], [[[19.3, 0.3145], [20.7, 0.3145]], {"stroke": "red"}], [[[21, 0.30376000000000003], [21, 0.30684]], {"stroke": "red"}], [[[20.3, 0.3053], [21.7, 0.3053]], {"stroke": "red"}], [[[22, 0.29616000000000003], [22, 0.29924]], {"stroke": "red"}], [[[21.3, 0.2977], [22.7, 0.2977]], {"stroke": "red"}], [[[23, 0.30116000000000004], [23, 0.30424]], {"stroke": "red"}], [[[22.3, 0.3027], [23.7, 0.3027]], {"stroke": "red"}], [[[24, 0.29076], [24, 0.29384]], {"stroke": "red"}], [[[23.3, 0.2923], [24.7, 0.2923]], {"stroke": "red"}], [[[25, 0.28186], [25, 0.28493999999999997]], {"stroke": "red"}], [[[24.3, 0.2834], [25.7, 0.2834]], {"stroke": "red"}], [[[26, 0.28596], [26, 0.28903999999999996]], {"stroke": "red"}], [[[25.3, 0.2875], [26.7, 0.2875]], {"stroke": "red"}], [[[27, 0.32356], [27, 0.32664]], {"stroke": "red"}], [[[26.3, 0.3251], [27.7, 0.3251]], {"stroke": "red"}], [[[28, 0.33886], [28, 0.34193999999999997]], {"stroke": "red"}], [[[27.3, 0.3404], [28.7, 0.3404]], {"stroke": "red"}], [[[29, 0.34806000000000004], [29, 0.35114]], {"stroke": "red"}], [[[28.3, 0.3496], [29.7, 0.3496]], {"stroke": "red"}], [[[30, 0.35866000000000003], [30, 0.36174]], {"stroke": "red"}], [[[29.3, 0.3602], [30.7, 0.3602]], {"stroke": "red"}], [[[31, 0.36846], [31, 0.37154]], {"stroke": "red"}], [[[30.3, 0.37], [31.7, 0.37]], {"stroke": "red"}], [[[32, 0.36536], [32, 0.36844]], {"stroke": "red"}], [[[31.3, 0.3669], [32.7, 0.3669]], {"stroke": "red"}], [[[33, 0.32006], [33, 0.32314]], {"stroke": "red"}], [[[32.3, 0.3216], [33.7, 0.3216]], {"stroke": "red"}], [[[34, 0.35466000000000003], [34, 0.35774]], {"stroke": "red"}], [[[33.3, 0.3562], [34.7, 0.3562]], {"stroke": "red"}], [[[35, 0.31066], [35, 0.31373999999999996]], {"stroke": "red"}], [[[34.3, 0.3122], [35.7, 0.3122]], {"stroke": "red"}], [[[36, 0.32756], [36, 0.33064]], {"stroke": "red"}], [[[35.3, 0.3291], [36.7, 0.3291]], {"stroke": "red"}], [[[37, 0.30106], [37, 0.30413999999999997]], {"stroke": "red"}], [[[36.3, 0.3026], [37.7, 0.3026]], {"stroke": "red"}], [[[38, 0.32276], [38, 0.32583999999999996]], {"stroke": "red"}], [[[37.3, 0.3243], [38.7, 0.3243]], {"stroke": "red"}], [[[39, 0.35136], [39, 0.35444]], {"stroke": "red"}], [[[38.3, 0.3529], [39.7, 0.3529]], {"stroke": "red"}], [[[40, 0.33406], [40, 0.33714]], {"stroke": "red"}], [[[39.3, 0.3356], [40.7, 0.3356]], {"stroke": "red"}], [[[41, 0.29476], [41, 0.29784]], {"stroke": "red"}], [[[40.3, 0.2963], [41.7, 0.2963]], {"stroke": "red"}], [[[42, 0.32396], [42, 0.32704]], {"stroke": "red"}], [[[41.3, 0.3255], [42.7, 0.3255]], {"stroke": "red"}], [[[43, 0.32296], [43, 0.32604]], {"stroke": "red"}], [[[42.3, 0.3245], [43.7, 0.3245]], {"stroke": "red"}], [[[44, 0.29046], [44, 0.29353999999999997]], {"stroke": "red"}], [[[43.3, 0.292], [44.7, 0.292]], {"stroke": "red"}], [[[45, 0.35816000000000003], [45, 0.36124]], {"stroke": "red"}], [[[44.3, 0.3597], [45.7, 0.3597]], {"stroke": "red"}], [[[46, 0.30396], [46, 0.30704]], {"stroke": "red"}], [[[45.3, 0.3055], [46.7, 0.3055]], {"stroke": "red"}], [[[47, 0.36846], [47, 0.37154]], {"stroke": "red"}], [[[46.3, 0.37], [47.7, 0.37]], {"stroke": "red"}], [[[48, 0.29026], [48, 0.29334]], {"stroke": "red"}], [[[47.3, 0.2918], [48.7, 0.2918]], {"stroke": "red"}], [[[49, 0.28336], [49, 0.28644]], {"stroke": "red"}], [[[48.3, 0.2849], [49.7, 0.2849]], {"stroke": "red"}], [[[50, 0.31956], [50, 0.32264]], {"stroke": "red"}], [[[49.3, 0.3211], [50.7, 0.3211]], {"stroke": "red"}], [[[51, 0.34706000000000004], [51, 0.35014]], {"stroke": "red"}], [[[50.3, 0.3486], [51.7, 0.3486]], {"stroke": "red"}], [[[52, 0.34806000000000004], [52, 0.35114]], {"stroke": "red"}], [[[51.3, 0.3496], [52.7, 0.3496]], {"stroke": "red"}], [[[53, 0.31556], [53, 0.31864]], {"stroke": "red"}], [[[52.3, 0.3171], [53.7, 0.3171]], {"stroke": "red"}], [[[54, 0.31856], [54, 0.32164]], {"stroke": "red"}], [[[53.3, 0.3201], [54.7, 0.3201]], {"stroke": "red"}], [[[55, 0.28276], [55, 0.28584]], {"stroke": "red"}], [[[54.3, 0.2843], [55.7, 0.2843]], {"stroke": "red"}], [[[56, 0.29386], [56, 0.29694]], {"stroke": "red"}], [[[55.3, 0.2954], [56.7, 0.2954]], {"stroke": "red"}], [[[57, 0.30076], [57, 0.30384]], {"stroke": "red"}], [[[56.3, 0.3023], [57.7, 0.3023]], {"stroke": "red"}], [[[58, 0.33736], [58, 0.34043999999999996]], {"stroke": "red"}], [[[57.3, 0.3389], [58.7, 0.3389]], {"stroke": "red"}], [[[59, 0.29826], [59, 0.30134]], {"stroke": "red"}], [[[58.3, 0.2998], [59.7, 0.2998]], {"stroke": "red"}], [[[60, 0.31876], [60, 0.32183999999999996]], {"stroke": "red"}], [[[59.3, 0.3203], [60.7, 0.3203]], {"stroke": "red"}], [[[61, 0.31256], [61, 0.31564]], {"stroke": "red"}], [[[60.3, 0.3141], [61.7, 0.3141]], {"stroke": "red"}], [[[62, 0.28156000000000003], [62, 0.28464]], {"stroke": "red"}], [[[61.3, 0.2831], [62.7, 0.2831]], {"stroke": "red"}], [[[63, 0.32006], [63, 0.32314]], {"stroke": "red"}], [[[62.3, 0.3216], [63.7, 0.3216]], {"stroke": "red"}], [[[64, 0.32406], [64, 0.32714]], {"stroke": "red"}], [[[63.3, 0.3256], [64.7, 0.3256]], {"stroke": "red"}], [[[65, 0.26846000000000003], [65, 0.27154]], {"stroke": "red"}], [[[64.3, 0.27], [65.7, 0.27]], {"stroke": "red"}], [[[66, 0.29896], [66, 0.30204]], {"stroke": "red"}], [[[65.3, 0.3005], [66.7, 0.3005]], {"stroke": "red"}], [[[67, 0.33946000000000004], [67, 0.34254]], {"stroke": "red"}], [[[66.3, 0.341], [67.7, 0.341]], {"stroke": "red"}], [[[68, 0.35756], [68, 0.36063999999999996]], {"stroke": "red"}], [[[67.3, 0.3591], [68.7, 0.3591]], {"stroke": "red"}], [[[69, 0.30736], [69, 0.31044]], {"stroke": "red"}], [[[68.3, 0.3089], [69.7, 0.3089]], {"stroke": "red"}], [[[70, 0.31776], [70, 0.32083999999999996]], {"stroke": "red"}], [[[69.3, 0.3193], [70.7, 0.3193]], {"stroke": "red"}], [[[71, 0.32956], [71, 0.33264]], {"stroke": "red"}], [[[70.3, 0.3311], [71.7, 0.3311]], {"stroke": "red"}], [[[72, 0.30926000000000003], [72, 0.31234]], {"stroke": "red"}], [[[71.3, 0.3108], [72.7, 0.3108]], {"stroke": "red"}], [[[73, 0.26846000000000003], [73, 0.27154]], {"stroke": "red"}], [[[72.3, 0.27], [73.7, 0.27]], {"stroke": "red"}], [[[74, 0.32976], [74, 0.33283999999999997]], {"stroke": "red"}], [[[73.3, 0.3313], [74.7, 0.3313]], {"stroke": "red"}], [[[75, 0.30656], [75, 0.30963999999999997]], {"stroke": "red"}], [[[74.3, 0.3081], [75.7, 0.3081]], {"stroke": "red"}], [[[76, 0.32326], [76, 0.32633999999999996]], {"stroke": "red"}], [[[75.3, 0.3248], [76.7, 0.3248]], {"stroke": "red"}], [[[77, 0.31076000000000004], [77, 0.31384]], {"stroke": "red"}], [[[76.3, 0.3123], [77.7, 0.3123]], {"stroke": "red"}], [[[78, 0.29366000000000003], [78, 0.29674]], {"stroke": "red"}], [[[77.3, 0.2952], [78.7, 0.2952]], {"stroke": "red"}], [[[79, 0.29116000000000003], [79, 0.29424]], {"stroke": "red"}], [[[78.3, 0.2927], [79.7, 0.2927]], {"stroke": "red"}], [[[80, 0.34686], [80, 0.34994]], {"stroke": "red"}], [[[79.3, 0.3484], [80.7, 0.3484]], {"stroke": "red"}], [[[81, 0.31126000000000004], [81, 0.31434]], {"stroke": "red"}], [[[80.3, 0.3128], [81.7, 0.3128]], {"stroke": "red"}], [[[82, 0.32026], [82, 0.32333999999999996]], {"stroke": "red"}], [[[81.3, 0.3218], [82.7, 0.3218]], {"stroke": "red"}], [[[83, 0.30836], [83, 0.31144]], {"stroke": "red"}], [[[82.3, 0.3099], [83.7, 0.3099]], {"stroke": "red"}], [[[84, 0.28496], [84, 0.28803999999999996]], {"stroke": "red"}], [[[83.3, 0.2865], [84.7, 0.2865]], {"stroke": "red"}], [[[85, 0.30296], [85, 0.30604]], {"stroke": "red"}], [[[84.3, 0.3045], [85.7, 0.3045]], {"stroke": "red"}], [[[86, 0.36846], [86, 0.37154]], {"stroke": "red"}], [[[85.3, 0.37], [86.7, 0.37]], {"stroke": "red"}], [[[87, 0.26846000000000003], [87, 0.27154]], {"stroke": "red"}], [[[86.3, 0.27], [87.7, 0.27]], {"stroke": "red"}], [[[88, 0.31936000000000003], [88, 0.32244]], {"stroke": "red"}], [[[87.3, 0.3209], [88.7, 0.3209]], {"stroke": "red"}], [[[89, 0.30536], [89, 0.30844]], {"stroke": "red"}], [[[88.3, 0.3069], [89.7, 0.3069]], {"stroke": "red"}], [[[90, 0.36846], [90, 0.37154]], {"stroke": "red"}], [[[89.3, 0.37], [90.7, 0.37]], {"stroke": "red"}], [[[91, 0.31026000000000004], [91, 0.31334]], {"stroke": "red"}], [[[90.3, 0.3118], [91.7, 0.3118]], {"stroke": "red"}], [[[92, 0.31226000000000004], [92, 0.31534]], {"stroke": "red"}], [[[91.3, 0.3138], [92.7, 0.3138]], {"stroke": "red"}], [[[93, 0.29966000000000004], [93, 0.30274]], {"stroke": "red"}], [[[92.3, 0.3012], [93.7, 0.3012]], {"stroke": "red"}], [[[94, 0.26846000000000003], [94, 0.27154]], {"stroke": "red"}], [[[93.3, 0.27], [94.7, 0.27]], {"stroke": "red"}], [[[95, 0.30736], [95, 0.31044]], {"stroke": "red"}], [[[94.3, 0.3089], [95.7, 0.3089]], {"stroke": "red"}], [[[96, 0.30056], [96, 0.30363999999999997]], {"stroke": "red"}], [[[95.3, 0.3021], [96.7, 0.3021]], {"stroke": "red"}], [[[97, 0.36846], [97, 0.37154]], {"stroke": "red"}], [[[96.3, 0.37], [97.7, 0.37]], {"stroke": "red"}], [[[98, 0.30416000000000004], [98, 0.30724]], {"stroke": "red"}], [[[97.3, 0.3057], [98.7, 0.3057]], {"stroke": "red"}], [[[99, 0.31776], [99, 0.32083999999999996]], {"stroke": "red"}], [[[98.3, 0.3193], [99.7, 0.3193]], {"stroke": "red"}], [[[100, 0.31066], [100, 0.31373999999999996]], {"stroke": "red"}], [[[99.3, 0.3122], [100.7, 0.3122]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir la valeur exacte la plus proche parmis les choix suivant.
Exercice 2 : Échantillonnage et intervalle de fluctuation
On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.32999999999999996, 0.53]], "scale": [6.0, 2249.999999999999], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.33], "0,33", "left", {"font-size": 13}], [[0.20000000000000018, 0.34], "0,34", "left", {"font-size": 13}]], "path": [[[[0, 0.43], [100, 0.43]]], [[[1, 0.4292], [1, 0.4336]], {"stroke": "red"}], [[[0.29999999999999993, 0.4314], [1.7000000000000002, 0.4314]], {"stroke": "red"}], [[[2, 0.3778], [2, 0.3822]], {"stroke": "red"}], [[[1.2999999999999998, 0.38], [2.7, 0.38]], {"stroke": "red"}], [[[3, 0.4334], [3, 0.43779999999999997]], {"stroke": "red"}], [[[2.3, 0.4356], [3.7, 0.4356]], {"stroke": "red"}], [[[4, 0.43410000000000004], [4, 0.4385]], {"stroke": "red"}], [[[3.3, 0.4363], [4.7, 0.4363]], {"stroke": "red"}], [[[5, 0.4445], [5, 0.44889999999999997]], {"stroke": "red"}], [[[4.3, 0.4467], [5.7, 0.4467]], {"stroke": "red"}], [[[6, 0.40280000000000005], [6, 0.4072]], {"stroke": "red"}], [[[5.3, 0.405], [6.7, 0.405]], {"stroke": "red"}], [[[7, 0.41910000000000003], [7, 0.4235]], {"stroke": "red"}], [[[6.3, 0.4213], [7.7, 0.4213]], {"stroke": "red"}], [[[8, 0.42110000000000003], [8, 0.4255]], {"stroke": "red"}], [[[7.3, 0.4233], [8.7, 0.4233]], {"stroke": "red"}], [[[9, 0.3778], [9, 0.3822]], {"stroke": "red"}], [[[8.3, 0.38], [9.7, 0.38]], {"stroke": "red"}], [[[10, 0.4429], [10, 0.4473]], {"stroke": "red"}], [[[9.3, 0.4451], [10.7, 0.4451]], {"stroke": "red"}], [[[11, 0.4307], [11, 0.4351]], {"stroke": "red"}], [[[10.3, 0.4329], [11.7, 0.4329]], {"stroke": "red"}], [[[12, 0.3803], [12, 0.3847]], {"stroke": "red"}], [[[11.3, 0.3825], [12.7, 0.3825]], {"stroke": "red"}], [[[13, 0.4778], [13, 0.48219999999999996]], {"stroke": "red"}], [[[12.3, 0.48], [13.7, 0.48]], {"stroke": "red"}], [[[14, 0.45280000000000004], [14, 0.4572]], {"stroke": "red"}], [[[13.3, 0.455], [14.7, 0.455]], {"stroke": "red"}], [[[15, 0.4118], [15, 0.41619999999999996]], {"stroke": "red"}], [[[14.3, 0.414], [15.7, 0.414]], {"stroke": "red"}], [[[16, 0.4148], [16, 0.41919999999999996]], {"stroke": "red"}], [[[15.3, 0.417], [16.7, 0.417]], {"stroke": "red"}], [[[17, 0.4713], [17, 0.47569999999999996]], {"stroke": "red"}], [[[16.3, 0.4735], [17.7, 0.4735]], {"stroke": "red"}], [[[18, 0.3915], [18, 0.3959]], {"stroke": "red"}], [[[17.3, 0.3937], [18.7, 0.3937]], {"stroke": "red"}], [[[19, 0.444], [19, 0.44839999999999997]], {"stroke": "red"}], [[[18.3, 0.4462], [19.7, 0.4462]], {"stroke": "red"}], [[[20, 0.4284], [20, 0.43279999999999996]], {"stroke": "red"}], [[[19.3, 0.4306], [20.7, 0.4306]], {"stroke": "red"}], [[[21, 0.4577], [21, 0.46209999999999996]], {"stroke": "red"}], [[[20.3, 0.4599], [21.7, 0.4599]], {"stroke": "red"}], [[[22, 0.45270000000000005], [22, 0.4571]], {"stroke": "red"}], [[[21.3, 0.4549], [22.7, 0.4549]], {"stroke": "red"}], [[[23, 0.4183], [23, 0.42269999999999996]], {"stroke": "red"}], [[[22.3, 0.4205], [23.7, 0.4205]], {"stroke": "red"}], [[[24, 0.4348], [24, 0.4392]], {"stroke": "red"}], [[[23.3, 0.437], [24.7, 0.437]], {"stroke": "red"}], [[[25, 0.42110000000000003], [25, 0.4255]], {"stroke": "red"}], [[[24.3, 0.4233], [25.7, 0.4233]], {"stroke": "red"}], [[[26, 0.4652], [26, 0.46959999999999996]], {"stroke": "red"}], [[[25.3, 0.4674], [26.7, 0.4674]], {"stroke": "red"}], [[[27, 0.4635], [27, 0.4679]], {"stroke": "red"}], [[[26.3, 0.4657], [27.7, 0.4657]], {"stroke": "red"}], [[[28, 0.42700000000000005], [28, 0.4314]], {"stroke": "red"}], [[[27.3, 0.4292], [28.7, 0.4292]], {"stroke": "red"}], [[[29, 0.4474], [29, 0.4518]], {"stroke": "red"}], [[[28.3, 0.4496], [29.7, 0.4496]], {"stroke": "red"}], [[[30, 0.4181], [30, 0.4225]], {"stroke": "red"}], [[[29.3, 0.4203], [30.7, 0.4203]], {"stroke": "red"}], [[[31, 0.42710000000000004], [31, 0.4315]], {"stroke": "red"}], [[[30.3, 0.4293], [31.7, 0.4293]], {"stroke": "red"}], [[[32, 0.467], [32, 0.4714]], {"stroke": "red"}], [[[31.3, 0.4692], [32.7, 0.4692]], {"stroke": "red"}], [[[33, 0.4297], [33, 0.4341]], {"stroke": "red"}], [[[32.3, 0.4319], [33.7, 0.4319]], {"stroke": "red"}], [[[34, 0.4445], [34, 0.44889999999999997]], {"stroke": "red"}], [[[33.3, 0.4467], [34.7, 0.4467]], {"stroke": "red"}], [[[35, 0.4596], [35, 0.46399999999999997]], {"stroke": "red"}], [[[34.3, 0.4618], [35.7, 0.4618]], {"stroke": "red"}], [[[36, 0.3866], [36, 0.39099999999999996]], {"stroke": "red"}], [[[35.3, 0.3888], [36.7, 0.3888]], {"stroke": "red"}], [[[37, 0.4001], [37, 0.40449999999999997]], {"stroke": "red"}], [[[36.3, 0.4023], [37.7, 0.4023]], {"stroke": "red"}], [[[38, 0.4556], [38, 0.45999999999999996]], {"stroke": "red"}], [[[37.3, 0.4578], [38.7, 0.4578]], {"stroke": "red"}], [[[39, 0.4778], [39, 0.48219999999999996]], {"stroke": "red"}], [[[38.3, 0.48], [39.7, 0.48]], {"stroke": "red"}], [[[40, 0.3925], [40, 0.3969]], {"stroke": "red"}], [[[39.3, 0.3947], [40.7, 0.3947]], {"stroke": "red"}], [[[41, 0.42510000000000003], [41, 0.4295]], {"stroke": "red"}], [[[40.3, 0.4273], [41.7, 0.4273]], {"stroke": "red"}], [[[42, 0.47440000000000004], [42, 0.4788]], {"stroke": "red"}], [[[41.3, 0.4766], [42.7, 0.4766]], {"stroke": "red"}], [[[43, 0.45320000000000005], [43, 0.4576]], {"stroke": "red"}], [[[42.3, 0.4554], [43.7, 0.4554]], {"stroke": "red"}], [[[44, 0.4295], [44, 0.43389999999999995]], {"stroke": "red"}], [[[43.3, 0.4317], [44.7, 0.4317]], {"stroke": "red"}], [[[45, 0.40230000000000005], [45, 0.4067]], {"stroke": "red"}], [[[44.3, 0.4045], [45.7, 0.4045]], {"stroke": "red"}], [[[46, 0.42210000000000003], [46, 0.4265]], {"stroke": "red"}], [[[45.3, 0.4243], [46.7, 0.4243]], {"stroke": "red"}], [[[47, 0.382], [47, 0.38639999999999997]], {"stroke": "red"}], [[[46.3, 0.3842], [47.7, 0.3842]], {"stroke": "red"}], [[[48, 0.41240000000000004], [48, 0.4168]], {"stroke": "red"}], [[[47.3, 0.4146], [48.7, 0.4146]], {"stroke": "red"}], [[[49, 0.4253], [49, 0.42969999999999997]], {"stroke": "red"}], [[[48.3, 0.4275], [49.7, 0.4275]], {"stroke": "red"}], [[[50, 0.444], [50, 0.44839999999999997]], {"stroke": "red"}], [[[49.3, 0.4462], [50.7, 0.4462]], {"stroke": "red"}], [[[51, 0.3778], [51, 0.3822]], {"stroke": "red"}], [[[50.3, 0.38], [51.7, 0.38]], {"stroke": "red"}], [[[52, 0.4248], [52, 0.42919999999999997]], {"stroke": "red"}], [[[51.3, 0.427], [52.7, 0.427]], {"stroke": "red"}], [[[53, 0.39120000000000005], [53, 0.3956]], {"stroke": "red"}], [[[52.3, 0.3934], [53.7, 0.3934]], {"stroke": "red"}], [[[54, 0.4778], [54, 0.48219999999999996]], {"stroke": "red"}], [[[53.3, 0.48], [54.7, 0.48]], {"stroke": "red"}], [[[55, 0.4207], [55, 0.4251]], {"stroke": "red"}], [[[54.3, 0.4229], [55.7, 0.4229]], {"stroke": "red"}], [[[56, 0.4061], [56, 0.4105]], {"stroke": "red"}], [[[55.3, 0.4083], [56.7, 0.4083]], {"stroke": "red"}], [[[57, 0.46440000000000003], [57, 0.4688]], {"stroke": "red"}], [[[56.3, 0.4666], [57.7, 0.4666]], {"stroke": "red"}], [[[58, 0.4778], [58, 0.48219999999999996]], {"stroke": "red"}], [[[57.3, 0.48], [58.7, 0.48]], {"stroke": "red"}], [[[59, 0.39740000000000003], [59, 0.4018]], {"stroke": "red"}], [[[58.3, 0.3996], [59.7, 0.3996]], {"stroke": "red"}], [[[60, 0.3957], [60, 0.40009999999999996]], {"stroke": "red"}], [[[59.3, 0.3979], [60.7, 0.3979]], {"stroke": "red"}], [[[61, 0.43710000000000004], [61, 0.4415]], {"stroke": "red"}], [[[60.3, 0.4393], [61.7, 0.4393]], {"stroke": "red"}], [[[62, 0.4571], [62, 0.46149999999999997]], {"stroke": "red"}], [[[61.3, 0.4593], [62.7, 0.4593]], {"stroke": "red"}], [[[63, 0.41550000000000004], [63, 0.4199]], {"stroke": "red"}], [[[62.3, 0.4177], [63.7, 0.4177]], {"stroke": "red"}], [[[64, 0.445], [64, 0.44939999999999997]], {"stroke": "red"}], [[[63.3, 0.4472], [64.7, 0.4472]], {"stroke": "red"}], [[[65, 0.42460000000000003], [65, 0.429]], {"stroke": "red"}], [[[64.3, 0.4268], [65.7, 0.4268]], {"stroke": "red"}], [[[66, 0.4778], [66, 0.48219999999999996]], {"stroke": "red"}], [[[65.3, 0.48], [66.7, 0.48]], {"stroke": "red"}], [[[67, 0.4088], [67, 0.41319999999999996]], {"stroke": "red"}], [[[66.3, 0.411], [67.7, 0.411]], {"stroke": "red"}], [[[68, 0.4208], [68, 0.42519999999999997]], {"stroke": "red"}], [[[67.3, 0.423], [68.7, 0.423]], {"stroke": "red"}], [[[69, 0.4133], [69, 0.41769999999999996]], {"stroke": "red"}], [[[68.3, 0.4155], [69.7, 0.4155]], {"stroke": "red"}], [[[70, 0.45680000000000004], [70, 0.4612]], {"stroke": "red"}], [[[69.3, 0.459], [70.7, 0.459]], {"stroke": "red"}], [[[71, 0.3942], [71, 0.39859999999999995]], {"stroke": "red"}], [[[70.3, 0.3964], [71.7, 0.3964]], {"stroke": "red"}], [[[72, 0.4056], [72, 0.41]], {"stroke": "red"}], [[[71.3, 0.4078], [72.7, 0.4078]], {"stroke": "red"}], [[[73, 0.4379], [73, 0.44229999999999997]], {"stroke": "red"}], [[[72.3, 0.4401], [73.7, 0.4401]], {"stroke": "red"}], [[[74, 0.4465], [74, 0.45089999999999997]], {"stroke": "red"}], [[[73.3, 0.4487], [74.7, 0.4487]], {"stroke": "red"}], [[[75, 0.4484], [75, 0.4528]], {"stroke": "red"}], [[[74.3, 0.4506], [75.7, 0.4506]], {"stroke": "red"}], [[[76, 0.43220000000000003], [76, 0.4366]], {"stroke": "red"}], [[[75.3, 0.4344], [76.7, 0.4344]], {"stroke": "red"}], [[[77, 0.3961], [77, 0.40049999999999997]], {"stroke": "red"}], [[[76.3, 0.3983], [77.7, 0.3983]], {"stroke": "red"}], [[[78, 0.3778], [78, 0.3822]], {"stroke": "red"}], [[[77.3, 0.38], [78.7, 0.38]], {"stroke": "red"}], [[[79, 0.4349], [79, 0.43929999999999997]], {"stroke": "red"}], [[[78.3, 0.4371], [79.7, 0.4371]], {"stroke": "red"}], [[[80, 0.4399], [80, 0.4443]], {"stroke": "red"}], [[[79.3, 0.4421], [80.7, 0.4421]], {"stroke": "red"}], [[[81, 0.43320000000000003], [81, 0.4376]], {"stroke": "red"}], [[[80.3, 0.4354], [81.7, 0.4354]], {"stroke": "red"}], [[[82, 0.4424], [82, 0.4468]], {"stroke": "red"}], [[[81.3, 0.4446], [82.7, 0.4446]], {"stroke": "red"}], [[[83, 0.45940000000000003], [83, 0.4638]], {"stroke": "red"}], [[[82.3, 0.4616], [83.7, 0.4616]], {"stroke": "red"}], [[[84, 0.42310000000000003], [84, 0.4275]], {"stroke": "red"}], [[[83.3, 0.4253], [84.7, 0.4253]], {"stroke": "red"}], [[[85, 0.42460000000000003], [85, 0.429]], {"stroke": "red"}], [[[84.3, 0.4268], [85.7, 0.4268]], {"stroke": "red"}], [[[86, 0.39990000000000003], [86, 0.4043]], {"stroke": "red"}], [[[85.3, 0.4021], [86.7, 0.4021]], {"stroke": "red"}], [[[87, 0.4258], [87, 0.43019999999999997]], {"stroke": "red"}], [[[86.3, 0.428], [87.7, 0.428]], {"stroke": "red"}], [[[88, 0.43970000000000004], [88, 0.4441]], {"stroke": "red"}], [[[87.3, 0.4419], [88.7, 0.4419]], {"stroke": "red"}], [[[89, 0.44580000000000003], [89, 0.4502]], {"stroke": "red"}], [[[88.3, 0.448], [89.7, 0.448]], {"stroke": "red"}], [[[90, 0.45830000000000004], [90, 0.4627]], {"stroke": "red"}], [[[89.3, 0.4605], [90.7, 0.4605]], {"stroke": "red"}], [[[91, 0.4328], [91, 0.4372]], {"stroke": "red"}], [[[90.3, 0.435], [91.7, 0.435]], {"stroke": "red"}], [[[92, 0.4268], [92, 0.43119999999999997]], {"stroke": "red"}], [[[91.3, 0.429], [92.7, 0.429]], {"stroke": "red"}], [[[93, 0.4539], [93, 0.4583]], {"stroke": "red"}], [[[92.3, 0.4561], [93.7, 0.4561]], {"stroke": "red"}], [[[94, 0.3778], [94, 0.3822]], {"stroke": "red"}], [[[93.3, 0.38], [94.7, 0.38]], {"stroke": "red"}], [[[95, 0.42160000000000003], [95, 0.426]], {"stroke": "red"}], [[[94.3, 0.4238], [95.7, 0.4238]], {"stroke": "red"}], [[[96, 0.41640000000000005], [96, 0.4208]], {"stroke": "red"}], [[[95.3, 0.4186], [96.7, 0.4186]], {"stroke": "red"}], [[[97, 0.4355], [97, 0.43989999999999996]], {"stroke": "red"}], [[[96.3, 0.4377], [97.7, 0.4377]], {"stroke": "red"}], [[[98, 0.4252], [98, 0.4296]], {"stroke": "red"}], [[[97.3, 0.4274], [98.7, 0.4274]], {"stroke": "red"}], [[[99, 0.41500000000000004], [99, 0.4194]], {"stroke": "red"}], [[[98.3, 0.4172], [99.7, 0.4172]], {"stroke": "red"}], [[[100, 0.3966], [100, 0.40099999999999997]], {"stroke": "red"}], [[[99.3, 0.3988], [100.7, 0.3988]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir la valeur exacte la plus proche parmis les choix suivant.
Exercice 3 : Échantillonnage et intervalle de fluctuation
On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.382, 0.518]], "scale": [6.0, 3308.8235294117644], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.38], "0,38", "left", {"font-size": 13}], [[0.20000000000000018, 0.39], "0,39", "left", {"font-size": 13}]], "path": [[[[0, 0.45], [100, 0.45]]], [[[1, 0.471704], [1, 0.474696]], {"stroke": "red"}], [[[0.29999999999999993, 0.4732], [1.7000000000000002, 0.4732]], {"stroke": "red"}], [[[2, 0.442804], [2, 0.44579599999999997]], {"stroke": "red"}], [[[1.2999999999999998, 0.4443], [2.7, 0.4443]], {"stroke": "red"}], [[[3, 0.457504], [3, 0.460496]], {"stroke": "red"}], [[[2.3, 0.459], [3.7, 0.459]], {"stroke": "red"}], [[[4, 0.458604], [4, 0.461596]], {"stroke": "red"}], [[[3.3, 0.4601], [4.7, 0.4601]], {"stroke": "red"}], [[[5, 0.444804], [5, 0.44779599999999997]], {"stroke": "red"}], [[[4.3, 0.4463], [5.7, 0.4463]], {"stroke": "red"}], [[[6, 0.413504], [6, 0.416496]], {"stroke": "red"}], [[[5.3, 0.415], [6.7, 0.415]], {"stroke": "red"}], [[[7, 0.471504], [7, 0.474496]], {"stroke": "red"}], [[[6.3, 0.473], [7.7, 0.473]], {"stroke": "red"}], [[[8, 0.413504], [8, 0.416496]], {"stroke": "red"}], [[[7.3, 0.415], [8.7, 0.415]], {"stroke": "red"}], [[[9, 0.465204], [9, 0.468196]], {"stroke": "red"}], [[[8.3, 0.4667], [9.7, 0.4667]], {"stroke": "red"}], [[[10, 0.434604], [10, 0.437596]], {"stroke": "red"}], [[[9.3, 0.4361], [10.7, 0.4361]], {"stroke": "red"}], [[[11, 0.434104], [11, 0.437096]], {"stroke": "red"}], [[[10.3, 0.4356], [11.7, 0.4356]], {"stroke": "red"}], [[[12, 0.438204], [12, 0.441196]], {"stroke": "red"}], [[[11.3, 0.4397], [12.7, 0.4397]], {"stroke": "red"}], [[[13, 0.449904], [13, 0.452896]], {"stroke": "red"}], [[[12.3, 0.4514], [13.7, 0.4514]], {"stroke": "red"}], [[[14, 0.463804], [14, 0.466796]], {"stroke": "red"}], [[[13.3, 0.4653], [14.7, 0.4653]], {"stroke": "red"}], [[[15, 0.431304], [15, 0.434296]], {"stroke": "red"}], [[[14.3, 0.4328], [15.7, 0.4328]], {"stroke": "red"}], [[[16, 0.435204], [16, 0.438196]], {"stroke": "red"}], [[[15.3, 0.4367], [16.7, 0.4367]], {"stroke": "red"}], [[[17, 0.460104], [17, 0.463096]], {"stroke": "red"}], [[[16.3, 0.4616], [17.7, 0.4616]], {"stroke": "red"}], [[[18, 0.483504], [18, 0.486496]], {"stroke": "red"}], [[[17.3, 0.485], [18.7, 0.485]], {"stroke": "red"}], [[[19, 0.462304], [19, 0.465296]], {"stroke": "red"}], [[[18.3, 0.4638], [19.7, 0.4638]], {"stroke": "red"}], [[[20, 0.462304], [20, 0.465296]], {"stroke": "red"}], [[[19.3, 0.4638], [20.7, 0.4638]], {"stroke": "red"}], [[[21, 0.455704], [21, 0.458696]], {"stroke": "red"}], [[[20.3, 0.4572], [21.7, 0.4572]], {"stroke": "red"}], [[[22, 0.470004], [22, 0.47299599999999997]], {"stroke": "red"}], [[[21.3, 0.4715], [22.7, 0.4715]], {"stroke": "red"}], [[[23, 0.433304], [23, 0.436296]], {"stroke": "red"}], [[[22.3, 0.4348], [23.7, 0.4348]], {"stroke": "red"}], [[[24, 0.444804], [24, 0.44779599999999997]], {"stroke": "red"}], [[[23.3, 0.4463], [24.7, 0.4463]], {"stroke": "red"}], [[[25, 0.431404], [25, 0.434396]], {"stroke": "red"}], [[[24.3, 0.4329], [25.7, 0.4329]], {"stroke": "red"}], [[[26, 0.472504], [26, 0.475496]], {"stroke": "red"}], [[[25.3, 0.474], [26.7, 0.474]], {"stroke": "red"}], [[[27, 0.457404], [27, 0.46039599999999997]], {"stroke": "red"}], [[[26.3, 0.4589], [27.7, 0.4589]], {"stroke": "red"}], [[[28, 0.413504], [28, 0.416496]], {"stroke": "red"}], [[[27.3, 0.415], [28.7, 0.415]], {"stroke": "red"}], [[[29, 0.417004], [29, 0.419996]], {"stroke": "red"}], [[[28.3, 0.4185], [29.7, 0.4185]], {"stroke": "red"}], [[[30, 0.458404], [30, 0.461396]], {"stroke": "red"}], [[[29.3, 0.4599], [30.7, 0.4599]], {"stroke": "red"}], [[[31, 0.413504], [31, 0.416496]], {"stroke": "red"}], [[[30.3, 0.415], [31.7, 0.415]], {"stroke": "red"}], [[[32, 0.443804], [32, 0.44679599999999997]], {"stroke": "red"}], [[[31.3, 0.4453], [32.7, 0.4453]], {"stroke": "red"}], [[[33, 0.448904], [33, 0.451896]], {"stroke": "red"}], [[[32.3, 0.4504], [33.7, 0.4504]], {"stroke": "red"}], [[[34, 0.417604], [34, 0.42059599999999997]], {"stroke": "red"}], [[[33.3, 0.4191], [34.7, 0.4191]], {"stroke": "red"}], [[[35, 0.470804], [35, 0.473796]], {"stroke": "red"}], [[[34.3, 0.4723], [35.7, 0.4723]], {"stroke": "red"}], [[[36, 0.454804], [36, 0.457796]], {"stroke": "red"}], [[[35.3, 0.4563], [36.7, 0.4563]], {"stroke": "red"}], [[[37, 0.449804], [37, 0.452796]], {"stroke": "red"}], [[[36.3, 0.4513], [37.7, 0.4513]], {"stroke": "red"}], [[[38, 0.458804], [38, 0.461796]], {"stroke": "red"}], [[[37.3, 0.4603], [38.7, 0.4603]], {"stroke": "red"}], [[[39, 0.480204], [39, 0.483196]], {"stroke": "red"}], [[[38.3, 0.4817], [39.7, 0.4817]], {"stroke": "red"}], [[[40, 0.437204], [40, 0.440196]], {"stroke": "red"}], [[[39.3, 0.4387], [40.7, 0.4387]], {"stroke": "red"}], [[[41, 0.413504], [41, 0.416496]], {"stroke": "red"}], [[[40.3, 0.415], [41.7, 0.415]], {"stroke": "red"}], [[[42, 0.452004], [42, 0.454996]], {"stroke": "red"}], [[[41.3, 0.4535], [42.7, 0.4535]], {"stroke": "red"}], [[[43, 0.470104], [43, 0.473096]], {"stroke": "red"}], [[[42.3, 0.4716], [43.7, 0.4716]], {"stroke": "red"}], [[[44, 0.449504], [44, 0.452496]], {"stroke": "red"}], [[[43.3, 0.451], [44.7, 0.451]], {"stroke": "red"}], [[[45, 0.441004], [45, 0.443996]], {"stroke": "red"}], [[[44.3, 0.4425], [45.7, 0.4425]], {"stroke": "red"}], [[[46, 0.450304], [46, 0.453296]], {"stroke": "red"}], [[[45.3, 0.4518], [46.7, 0.4518]], {"stroke": "red"}], [[[47, 0.438604], [47, 0.441596]], {"stroke": "red"}], [[[46.3, 0.4401], [47.7, 0.4401]], {"stroke": "red"}], [[[48, 0.473404], [48, 0.476396]], {"stroke": "red"}], [[[47.3, 0.4749], [48.7, 0.4749]], {"stroke": "red"}], [[[49, 0.483504], [49, 0.486496]], {"stroke": "red"}], [[[48.3, 0.485], [49.7, 0.485]], {"stroke": "red"}], [[[50, 0.424704], [50, 0.427696]], {"stroke": "red"}], [[[49.3, 0.4262], [50.7, 0.4262]], {"stroke": "red"}], [[[51, 0.450504], [51, 0.453496]], {"stroke": "red"}], [[[50.3, 0.452], [51.7, 0.452]], {"stroke": "red"}], [[[52, 0.462504], [52, 0.465496]], {"stroke": "red"}], [[[51.3, 0.464], [52.7, 0.464]], {"stroke": "red"}], [[[53, 0.431804], [53, 0.434796]], {"stroke": "red"}], [[[52.3, 0.4333], [53.7, 0.4333]], {"stroke": "red"}], [[[54, 0.436704], [54, 0.439696]], {"stroke": "red"}], [[[53.3, 0.4382], [54.7, 0.4382]], {"stroke": "red"}], [[[55, 0.424004], [55, 0.426996]], {"stroke": "red"}], [[[54.3, 0.4255], [55.7, 0.4255]], {"stroke": "red"}], [[[56, 0.418604], [56, 0.42159599999999997]], {"stroke": "red"}], [[[55.3, 0.4201], [56.7, 0.4201]], {"stroke": "red"}], [[[57, 0.456704], [57, 0.459696]], {"stroke": "red"}], [[[56.3, 0.4582], [57.7, 0.4582]], {"stroke": "red"}], [[[58, 0.466904], [58, 0.469896]], {"stroke": "red"}], [[[57.3, 0.4684], [58.7, 0.4684]], {"stroke": "red"}], [[[59, 0.446104], [59, 0.449096]], {"stroke": "red"}], [[[58.3, 0.4476], [59.7, 0.4476]], {"stroke": "red"}], [[[60, 0.430404], [60, 0.433396]], {"stroke": "red"}], [[[59.3, 0.4319], [60.7, 0.4319]], {"stroke": "red"}], [[[61, 0.434604], [61, 0.437596]], {"stroke": "red"}], [[[60.3, 0.4361], [61.7, 0.4361]], {"stroke": "red"}], [[[62, 0.445304], [62, 0.448296]], {"stroke": "red"}], [[[61.3, 0.4468], [62.7, 0.4468]], {"stroke": "red"}], [[[63, 0.455604], [63, 0.458596]], {"stroke": "red"}], [[[62.3, 0.4571], [63.7, 0.4571]], {"stroke": "red"}], [[[64, 0.438104], [64, 0.441096]], {"stroke": "red"}], [[[63.3, 0.4396], [64.7, 0.4396]], {"stroke": "red"}], [[[65, 0.457304], [65, 0.460296]], {"stroke": "red"}], [[[64.3, 0.4588], [65.7, 0.4588]], {"stroke": "red"}], [[[66, 0.423704], [66, 0.426696]], {"stroke": "red"}], [[[65.3, 0.4252], [66.7, 0.4252]], {"stroke": "red"}], [[[67, 0.450404], [67, 0.453396]], {"stroke": "red"}], [[[66.3, 0.4519], [67.7, 0.4519]], {"stroke": "red"}], [[[68, 0.430004], [68, 0.432996]], {"stroke": "red"}], [[[67.3, 0.4315], [68.7, 0.4315]], {"stroke": "red"}], [[[69, 0.413504], [69, 0.416496]], {"stroke": "red"}], [[[68.3, 0.415], [69.7, 0.415]], {"stroke": "red"}], [[[70, 0.432604], [70, 0.435596]], {"stroke": "red"}], [[[69.3, 0.4341], [70.7, 0.4341]], {"stroke": "red"}], [[[71, 0.459104], [71, 0.462096]], {"stroke": "red"}], [[[70.3, 0.4606], [71.7, 0.4606]], {"stroke": "red"}], [[[72, 0.434104], [72, 0.437096]], {"stroke": "red"}], [[[71.3, 0.4356], [72.7, 0.4356]], {"stroke": "red"}], [[[73, 0.434004], [73, 0.436996]], {"stroke": "red"}], [[[72.3, 0.4355], [73.7, 0.4355]], {"stroke": "red"}], [[[74, 0.481604], [74, 0.48459599999999997]], {"stroke": "red"}], [[[73.3, 0.4831], [74.7, 0.4831]], {"stroke": "red"}], [[[75, 0.466804], [75, 0.469796]], {"stroke": "red"}], [[[74.3, 0.4683], [75.7, 0.4683]], {"stroke": "red"}], [[[76, 0.463504], [76, 0.466496]], {"stroke": "red"}], [[[75.3, 0.465], [76.7, 0.465]], {"stroke": "red"}], [[[77, 0.457904], [77, 0.460896]], {"stroke": "red"}], [[[76.3, 0.4594], [77.7, 0.4594]], {"stroke": "red"}], [[[78, 0.416404], [78, 0.419396]], {"stroke": "red"}], [[[77.3, 0.4179], [78.7, 0.4179]], {"stroke": "red"}], [[[79, 0.446104], [79, 0.449096]], {"stroke": "red"}], [[[78.3, 0.4476], [79.7, 0.4476]], {"stroke": "red"}], [[[80, 0.435104], [80, 0.438096]], {"stroke": "red"}], [[[79.3, 0.4366], [80.7, 0.4366]], {"stroke": "red"}], [[[81, 0.43980400000000003], [81, 0.442796]], {"stroke": "red"}], [[[80.3, 0.4413], [81.7, 0.4413]], {"stroke": "red"}], [[[82, 0.419504], [82, 0.422496]], {"stroke": "red"}], [[[81.3, 0.421], [82.7, 0.421]], {"stroke": "red"}], [[[83, 0.447104], [83, 0.450096]], {"stroke": "red"}], [[[82.3, 0.4486], [83.7, 0.4486]], {"stroke": "red"}], [[[84, 0.422304], [84, 0.425296]], {"stroke": "red"}], [[[83.3, 0.4238], [84.7, 0.4238]], {"stroke": "red"}], [[[85, 0.451204], [85, 0.454196]], {"stroke": "red"}], [[[84.3, 0.4527], [85.7, 0.4527]], {"stroke": "red"}], [[[86, 0.462604], [86, 0.465596]], {"stroke": "red"}], [[[85.3, 0.4641], [86.7, 0.4641]], {"stroke": "red"}], [[[87, 0.431504], [87, 0.434496]], {"stroke": "red"}], [[[86.3, 0.433], [87.7, 0.433]], {"stroke": "red"}], [[[88, 0.413504], [88, 0.416496]], {"stroke": "red"}], [[[87.3, 0.415], [88.7, 0.415]], {"stroke": "red"}], [[[89, 0.426604], [89, 0.429596]], {"stroke": "red"}], [[[88.3, 0.4281], [89.7, 0.4281]], {"stroke": "red"}], [[[90, 0.469604], [90, 0.472596]], {"stroke": "red"}], [[[89.3, 0.4711], [90.7, 0.4711]], {"stroke": "red"}], [[[91, 0.448904], [91, 0.451896]], {"stroke": "red"}], [[[90.3, 0.4504], [91.7, 0.4504]], {"stroke": "red"}], [[[92, 0.447104], [92, 0.450096]], {"stroke": "red"}], [[[91.3, 0.4486], [92.7, 0.4486]], {"stroke": "red"}], [[[93, 0.483504], [93, 0.486496]], {"stroke": "red"}], [[[92.3, 0.485], [93.7, 0.485]], {"stroke": "red"}], [[[94, 0.447904], [94, 0.450896]], {"stroke": "red"}], [[[93.3, 0.4494], [94.7, 0.4494]], {"stroke": "red"}], [[[95, 0.459404], [95, 0.462396]], {"stroke": "red"}], [[[94.3, 0.4609], [95.7, 0.4609]], {"stroke": "red"}], [[[96, 0.458304], [96, 0.461296]], {"stroke": "red"}], [[[95.3, 0.4598], [96.7, 0.4598]], {"stroke": "red"}], [[[97, 0.456104], [97, 0.459096]], {"stroke": "red"}], [[[96.3, 0.4576], [97.7, 0.4576]], {"stroke": "red"}], [[[98, 0.459504], [98, 0.462496]], {"stroke": "red"}], [[[97.3, 0.461], [98.7, 0.461]], {"stroke": "red"}], [[[99, 0.455804], [99, 0.458796]], {"stroke": "red"}], [[[98.3, 0.4573], [99.7, 0.4573]], {"stroke": "red"}], [[[100, 0.473104], [100, 0.476096]], {"stroke": "red"}], [[[99.3, 0.4746], [100.7, 0.4746]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir la valeur exacte la plus proche parmis les choix suivant.
Exercice 4 : Échantillonnage et intervalle de fluctuation
On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.16999999999999998, 0.33]], "scale": [6.0, 2812.4999999999995], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.17], "0,17", "left", {"font-size": 13}], [[0.20000000000000018, 0.18000000000000002], "0,18", "left", {"font-size": 13}]], "path": [[[[0, 0.25], [100, 0.25]]], [[[1, 0.24633999999999998], [1, 0.24986]], {"stroke": "red"}], [[[0.29999999999999993, 0.2481], [1.7000000000000002, 0.2481]], {"stroke": "red"}], [[[2, 0.25684], [2, 0.26036]], {"stroke": "red"}], [[[1.2999999999999998, 0.2586], [2.7, 0.2586]], {"stroke": "red"}], [[[3, 0.26314000000000004], [3, 0.26666]], {"stroke": "red"}], [[[2.3, 0.2649], [3.7, 0.2649]], {"stroke": "red"}], [[[4, 0.25024], [4, 0.25376]], {"stroke": "red"}], [[[3.3, 0.252], [4.7, 0.252]], {"stroke": "red"}], [[[5, 0.22324], [5, 0.22676000000000002]], {"stroke": "red"}], [[[4.3, 0.225], [5.7, 0.225]], {"stroke": "red"}], [[[6, 0.25894], [6, 0.26245999999999997]], {"stroke": "red"}], [[[5.3, 0.2607], [6.7, 0.2607]], {"stroke": "red"}], [[[7, 0.22904], [7, 0.23256000000000002]], {"stroke": "red"}], [[[6.3, 0.2308], [7.7, 0.2308]], {"stroke": "red"}], [[[8, 0.23004], [8, 0.23356000000000002]], {"stroke": "red"}], [[[7.3, 0.2318], [8.7, 0.2318]], {"stroke": "red"}], [[[9, 0.24264], [9, 0.24616000000000002]], {"stroke": "red"}], [[[8.3, 0.2444], [9.7, 0.2444]], {"stroke": "red"}], [[[10, 0.24084], [10, 0.24436000000000002]], {"stroke": "red"}], [[[9.3, 0.2426], [10.7, 0.2426]], {"stroke": "red"}], [[[11, 0.25894], [11, 0.26245999999999997]], {"stroke": "red"}], [[[10.3, 0.2607], [11.7, 0.2607]], {"stroke": "red"}], [[[12, 0.24303999999999998], [12, 0.24656]], {"stroke": "red"}], [[[11.3, 0.2448], [12.7, 0.2448]], {"stroke": "red"}], [[[13, 0.25834], [13, 0.26186]], {"stroke": "red"}], [[[12.3, 0.2601], [13.7, 0.2601]], {"stroke": "red"}], [[[14, 0.22613999999999998], [14, 0.22966]], {"stroke": "red"}], [[[13.3, 0.2279], [14.7, 0.2279]], {"stroke": "red"}], [[[15, 0.24003999999999998], [15, 0.24356]], {"stroke": "red"}], [[[14.3, 0.2418], [15.7, 0.2418]], {"stroke": "red"}], [[[16, 0.25784], [16, 0.26136]], {"stroke": "red"}], [[[15.3, 0.2596], [16.7, 0.2596]], {"stroke": "red"}], [[[17, 0.23784], [17, 0.24136000000000002]], {"stroke": "red"}], [[[16.3, 0.2396], [17.7, 0.2396]], {"stroke": "red"}], [[[18, 0.23604], [18, 0.23956000000000002]], {"stroke": "red"}], [[[17.3, 0.2378], [18.7, 0.2378]], {"stroke": "red"}], [[[19, 0.23814], [19, 0.24166]], {"stroke": "red"}], [[[18.3, 0.2399], [19.7, 0.2399]], {"stroke": "red"}], [[[20, 0.26374000000000003], [20, 0.26726]], {"stroke": "red"}], [[[19.3, 0.2655], [20.7, 0.2655]], {"stroke": "red"}], [[[21, 0.26304], [21, 0.26655999999999996]], {"stroke": "red"}], [[[20.3, 0.2648], [21.7, 0.2648]], {"stroke": "red"}], [[[22, 0.24664], [22, 0.25016]], {"stroke": "red"}], [[[21.3, 0.2484], [22.7, 0.2484]], {"stroke": "red"}], [[[23, 0.22324], [23, 0.22676000000000002]], {"stroke": "red"}], [[[22.3, 0.225], [23.7, 0.225]], {"stroke": "red"}], [[[24, 0.26434], [24, 0.26786]], {"stroke": "red"}], [[[23.3, 0.2661], [24.7, 0.2661]], {"stroke": "red"}], [[[25, 0.23723999999999998], [25, 0.24076]], {"stroke": "red"}], [[[24.3, 0.239], [25.7, 0.239]], {"stroke": "red"}], [[[26, 0.25194], [26, 0.25545999999999996]], {"stroke": "red"}], [[[25.3, 0.2537], [26.7, 0.2537]], {"stroke": "red"}], [[[27, 0.23604], [27, 0.23956000000000002]], {"stroke": "red"}], [[[26.3, 0.2378], [27.7, 0.2378]], {"stroke": "red"}], [[[28, 0.22863999999999998], [28, 0.23216]], {"stroke": "red"}], [[[27.3, 0.2304], [28.7, 0.2304]], {"stroke": "red"}], [[[29, 0.24323999999999998], [29, 0.24676]], {"stroke": "red"}], [[[28.3, 0.245], [29.7, 0.245]], {"stroke": "red"}], [[[30, 0.25304000000000004], [30, 0.25656]], {"stroke": "red"}], [[[29.3, 0.2548], [30.7, 0.2548]], {"stroke": "red"}], [[[31, 0.23903999999999997], [31, 0.24256]], {"stroke": "red"}], [[[30.3, 0.2408], [31.7, 0.2408]], {"stroke": "red"}], [[[32, 0.25754], [32, 0.26105999999999996]], {"stroke": "red"}], [[[31.3, 0.2593], [32.7, 0.2593]], {"stroke": "red"}], [[[33, 0.23984], [33, 0.24336000000000002]], {"stroke": "red"}], [[[32.3, 0.2416], [33.7, 0.2416]], {"stroke": "red"}], [[[34, 0.24084], [34, 0.24436000000000002]], {"stroke": "red"}], [[[33.3, 0.2426], [34.7, 0.2426]], {"stroke": "red"}], [[[35, 0.26784], [35, 0.27136]], {"stroke": "red"}], [[[34.3, 0.2696], [35.7, 0.2696]], {"stroke": "red"}], [[[36, 0.26094], [36, 0.26446]], {"stroke": "red"}], [[[35.3, 0.2627], [36.7, 0.2627]], {"stroke": "red"}], [[[37, 0.24144], [37, 0.24496]], {"stroke": "red"}], [[[36.3, 0.2432], [37.7, 0.2432]], {"stroke": "red"}], [[[38, 0.25654], [38, 0.26005999999999996]], {"stroke": "red"}], [[[37.3, 0.2583], [38.7, 0.2583]], {"stroke": "red"}], [[[39, 0.25164000000000003], [39, 0.25516]], {"stroke": "red"}], [[[38.3, 0.2534], [39.7, 0.2534]], {"stroke": "red"}], [[[40, 0.25154000000000004], [40, 0.25506]], {"stroke": "red"}], [[[39.3, 0.2533], [40.7, 0.2533]], {"stroke": "red"}], [[[41, 0.22643999999999997], [41, 0.22996]], {"stroke": "red"}], [[[40.3, 0.2282], [41.7, 0.2282]], {"stroke": "red"}], [[[42, 0.24053999999999998], [42, 0.24406]], {"stroke": "red"}], [[[41.3, 0.2423], [42.7, 0.2423]], {"stroke": "red"}], [[[43, 0.24983999999999998], [43, 0.25336]], {"stroke": "red"}], [[[42.3, 0.2516], [43.7, 0.2516]], {"stroke": "red"}], [[[44, 0.24014], [44, 0.24366000000000002]], {"stroke": "red"}], [[[43.3, 0.2419], [44.7, 0.2419]], {"stroke": "red"}], [[[45, 0.25044], [45, 0.25395999999999996]], {"stroke": "red"}], [[[44.3, 0.2522], [45.7, 0.2522]], {"stroke": "red"}], [[[46, 0.25024], [46, 0.25376]], {"stroke": "red"}], [[[45.3, 0.252], [46.7, 0.252]], {"stroke": "red"}], [[[47, 0.24794], [47, 0.25146]], {"stroke": "red"}], [[[46.3, 0.2497], [47.7, 0.2497]], {"stroke": "red"}], [[[48, 0.25934], [48, 0.26286]], {"stroke": "red"}], [[[47.3, 0.2611], [48.7, 0.2611]], {"stroke": "red"}], [[[49, 0.24284], [49, 0.24636000000000002]], {"stroke": "red"}], [[[48.3, 0.2446], [49.7, 0.2446]], {"stroke": "red"}], [[[50, 0.27174000000000004], [50, 0.27526]], {"stroke": "red"}], [[[49.3, 0.2735], [50.7, 0.2735]], {"stroke": "red"}], [[[51, 0.26144], [51, 0.26496]], {"stroke": "red"}], [[[50.3, 0.2632], [51.7, 0.2632]], {"stroke": "red"}], [[[52, 0.25554], [52, 0.25905999999999996]], {"stroke": "red"}], [[[51.3, 0.2573], [52.7, 0.2573]], {"stroke": "red"}], [[[53, 0.23944], [53, 0.24296]], {"stroke": "red"}], [[[52.3, 0.2412], [53.7, 0.2412]], {"stroke": "red"}], [[[54, 0.26014000000000004], [54, 0.26366]], {"stroke": "red"}], [[[53.3, 0.2619], [54.7, 0.2619]], {"stroke": "red"}], [[[55, 0.26874000000000003], [55, 0.27226]], {"stroke": "red"}], [[[54.3, 0.2705], [55.7, 0.2705]], {"stroke": "red"}], [[[56, 0.26144], [56, 0.26496]], {"stroke": "red"}], [[[55.3, 0.2632], [56.7, 0.2632]], {"stroke": "red"}], [[[57, 0.26714], [57, 0.27065999999999996]], {"stroke": "red"}], [[[56.3, 0.2689], [57.7, 0.2689]], {"stroke": "red"}], [[[58, 0.25914000000000004], [58, 0.26266]], {"stroke": "red"}], [[[57.3, 0.2609], [58.7, 0.2609]], {"stroke": "red"}], [[[59, 0.26014000000000004], [59, 0.26366]], {"stroke": "red"}], [[[58.3, 0.2619], [59.7, 0.2619]], {"stroke": "red"}], [[[60, 0.23893999999999999], [60, 0.24246]], {"stroke": "red"}], [[[59.3, 0.2407], [60.7, 0.2407]], {"stroke": "red"}], [[[61, 0.25344], [61, 0.25695999999999997]], {"stroke": "red"}], [[[60.3, 0.2552], [61.7, 0.2552]], {"stroke": "red"}], [[[62, 0.27224000000000004], [62, 0.27576]], {"stroke": "red"}], [[[61.3, 0.274], [62.7, 0.274]], {"stroke": "red"}], [[[63, 0.24214], [63, 0.24566000000000002]], {"stroke": "red"}], [[[62.3, 0.2439], [63.7, 0.2439]], {"stroke": "red"}], [[[64, 0.26074], [64, 0.26426]], {"stroke": "red"}], [[[63.3, 0.2625], [64.7, 0.2625]], {"stroke": "red"}], [[[65, 0.26544], [65, 0.26896]], {"stroke": "red"}], [[[64.3, 0.2672], [65.7, 0.2672]], {"stroke": "red"}], [[[66, 0.22943999999999998], [66, 0.23296]], {"stroke": "red"}], [[[65.3, 0.2312], [66.7, 0.2312]], {"stroke": "red"}], [[[67, 0.25264000000000003], [67, 0.25616]], {"stroke": "red"}], [[[66.3, 0.2544], [67.7, 0.2544]], {"stroke": "red"}], [[[68, 0.24644], [68, 0.24996000000000002]], {"stroke": "red"}], [[[67.3, 0.2482], [68.7, 0.2482]], {"stroke": "red"}], [[[69, 0.25114000000000003], [69, 0.25466]], {"stroke": "red"}], [[[68.3, 0.2529], [69.7, 0.2529]], {"stroke": "red"}], [[[70, 0.24933999999999998], [70, 0.25286]], {"stroke": "red"}], [[[69.3, 0.2511], [70.7, 0.2511]], {"stroke": "red"}], [[[71, 0.26034], [71, 0.26386]], {"stroke": "red"}], [[[70.3, 0.2621], [71.7, 0.2621]], {"stroke": "red"}], [[[72, 0.23293999999999998], [72, 0.23646]], {"stroke": "red"}], [[[71.3, 0.2347], [72.7, 0.2347]], {"stroke": "red"}], [[[73, 0.26624000000000003], [73, 0.26976]], {"stroke": "red"}], [[[72.3, 0.268], [73.7, 0.268]], {"stroke": "red"}], [[[74, 0.27324000000000004], [74, 0.27676]], {"stroke": "red"}], [[[73.3, 0.275], [74.7, 0.275]], {"stroke": "red"}], [[[75, 0.22643999999999997], [75, 0.22996]], {"stroke": "red"}], [[[74.3, 0.2282], [75.7, 0.2282]], {"stroke": "red"}], [[[76, 0.25264000000000003], [76, 0.25616]], {"stroke": "red"}], [[[75.3, 0.2544], [76.7, 0.2544]], {"stroke": "red"}], [[[77, 0.25814000000000004], [77, 0.26166]], {"stroke": "red"}], [[[76.3, 0.2599], [77.7, 0.2599]], {"stroke": "red"}], [[[78, 0.23384], [78, 0.23736000000000002]], {"stroke": "red"}], [[[77.3, 0.2356], [78.7, 0.2356]], {"stroke": "red"}], [[[79, 0.25824], [79, 0.26176]], {"stroke": "red"}], [[[78.3, 0.26], [79.7, 0.26]], {"stroke": "red"}], [[[80, 0.23364], [80, 0.23716]], {"stroke": "red"}], [[[79.3, 0.2354], [80.7, 0.2354]], {"stroke": "red"}], [[[81, 0.23984], [81, 0.24336000000000002]], {"stroke": "red"}], [[[80.3, 0.2416], [81.7, 0.2416]], {"stroke": "red"}], [[[82, 0.24253999999999998], [82, 0.24606]], {"stroke": "red"}], [[[81.3, 0.2443], [82.7, 0.2443]], {"stroke": "red"}], [[[83, 0.27244], [83, 0.27596]], {"stroke": "red"}], [[[82.3, 0.2742], [83.7, 0.2742]], {"stroke": "red"}], [[[84, 0.24284], [84, 0.24636000000000002]], {"stroke": "red"}], [[[83.3, 0.2446], [84.7, 0.2446]], {"stroke": "red"}], [[[85, 0.25324], [85, 0.25676]], {"stroke": "red"}], [[[84.3, 0.255], [85.7, 0.255]], {"stroke": "red"}], [[[86, 0.25094], [86, 0.25445999999999996]], {"stroke": "red"}], [[[85.3, 0.2527], [86.7, 0.2527]], {"stroke": "red"}], [[[87, 0.25814000000000004], [87, 0.26166]], {"stroke": "red"}], [[[86.3, 0.2599], [87.7, 0.2599]], {"stroke": "red"}], [[[88, 0.24533999999999997], [88, 0.24886]], {"stroke": "red"}], [[[87.3, 0.2471], [88.7, 0.2471]], {"stroke": "red"}], [[[89, 0.24803999999999998], [89, 0.25156]], {"stroke": "red"}], [[[88.3, 0.2498], [89.7, 0.2498]], {"stroke": "red"}], [[[90, 0.22524], [90, 0.22876000000000002]], {"stroke": "red"}], [[[89.3, 0.227], [90.7, 0.227]], {"stroke": "red"}], [[[91, 0.24344], [91, 0.24696]], {"stroke": "red"}], [[[90.3, 0.2452], [91.7, 0.2452]], {"stroke": "red"}], [[[92, 0.25234], [92, 0.25586]], {"stroke": "red"}], [[[91.3, 0.2541], [92.7, 0.2541]], {"stroke": "red"}], [[[93, 0.25294], [93, 0.25645999999999997]], {"stroke": "red"}], [[[92.3, 0.2547], [93.7, 0.2547]], {"stroke": "red"}], [[[94, 0.23074], [94, 0.23426000000000002]], {"stroke": "red"}], [[[93.3, 0.2325], [94.7, 0.2325]], {"stroke": "red"}], [[[95, 0.26094], [95, 0.26446]], {"stroke": "red"}], [[[94.3, 0.2627], [95.7, 0.2627]], {"stroke": "red"}], [[[96, 0.26004], [96, 0.26355999999999996]], {"stroke": "red"}], [[[95.3, 0.2618], [96.7, 0.2618]], {"stroke": "red"}], [[[97, 0.23514], [97, 0.23866]], {"stroke": "red"}], [[[96.3, 0.2369], [97.7, 0.2369]], {"stroke": "red"}], [[[98, 0.25094], [98, 0.25445999999999996]], {"stroke": "red"}], [[[97.3, 0.2527], [98.7, 0.2527]], {"stroke": "red"}], [[[99, 0.25184], [99, 0.25536]], {"stroke": "red"}], [[[98.3, 0.2536], [99.7, 0.2536]], {"stroke": "red"}], [[[100, 0.25234], [100, 0.25586]], {"stroke": "red"}], [[[99.3, 0.2541], [100.7, 0.2541]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir la valeur exacte la plus proche parmis les choix suivant.
Exercice 5 : Échantillonnage et intervalle de fluctuation
On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.372, 0.528]], "scale": [6.0, 2884.6153846153843], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.37], "0,37", "left", {"font-size": 13}], [[0.20000000000000018, 0.38], "0,38", "left", {"font-size": 13}]], "path": [[[[0, 0.45], [100, 0.45]]], [[[1, 0.423084], [1, 0.426516]], {"stroke": "red"}], [[[0.29999999999999993, 0.4248], [1.7000000000000002, 0.4248]], {"stroke": "red"}], [[[2, 0.444284], [2, 0.447716]], {"stroke": "red"}], [[[1.2999999999999998, 0.446], [2.7, 0.446]], {"stroke": "red"}], [[[3, 0.444084], [3, 0.44751599999999997]], {"stroke": "red"}], [[[2.3, 0.4458], [3.7, 0.4458]], {"stroke": "red"}], [[[4, 0.445084], [4, 0.44851599999999997]], {"stroke": "red"}], [[[3.3, 0.4468], [4.7, 0.4468]], {"stroke": "red"}], [[[5, 0.413284], [5, 0.416716]], {"stroke": "red"}], [[[4.3, 0.415], [5.7, 0.415]], {"stroke": "red"}], [[[6, 0.463684], [6, 0.467116]], {"stroke": "red"}], [[[5.3, 0.4654], [6.7, 0.4654]], {"stroke": "red"}], [[[7, 0.450984], [7, 0.454416]], {"stroke": "red"}], [[[6.3, 0.4527], [7.7, 0.4527]], {"stroke": "red"}], [[[8, 0.449584], [8, 0.453016]], {"stroke": "red"}], [[[7.3, 0.4513], [8.7, 0.4513]], {"stroke": "red"}], [[[9, 0.449484], [9, 0.452916]], {"stroke": "red"}], [[[8.3, 0.4512], [9.7, 0.4512]], {"stroke": "red"}], [[[10, 0.480884], [10, 0.48431599999999997]], {"stroke": "red"}], [[[9.3, 0.4826], [10.7, 0.4826]], {"stroke": "red"}], [[[11, 0.454384], [11, 0.457816]], {"stroke": "red"}], [[[10.3, 0.4561], [11.7, 0.4561]], {"stroke": "red"}], [[[12, 0.428584], [12, 0.432016]], {"stroke": "red"}], [[[11.3, 0.4303], [12.7, 0.4303]], {"stroke": "red"}], [[[13, 0.449884], [13, 0.453316]], {"stroke": "red"}], [[[12.3, 0.4516], [13.7, 0.4516]], {"stroke": "red"}], [[[14, 0.42748400000000003], [14, 0.430916]], {"stroke": "red"}], [[[13.3, 0.4292], [14.7, 0.4292]], {"stroke": "red"}], [[[15, 0.483284], [15, 0.486716]], {"stroke": "red"}], [[[14.3, 0.485], [15.7, 0.485]], {"stroke": "red"}], [[[16, 0.413584], [16, 0.417016]], {"stroke": "red"}], [[[15.3, 0.4153], [16.7, 0.4153]], {"stroke": "red"}], [[[17, 0.442884], [17, 0.446316]], {"stroke": "red"}], [[[16.3, 0.4446], [17.7, 0.4446]], {"stroke": "red"}], [[[18, 0.435584], [18, 0.439016]], {"stroke": "red"}], [[[17.3, 0.4373], [18.7, 0.4373]], {"stroke": "red"}], [[[19, 0.431984], [19, 0.43541599999999997]], {"stroke": "red"}], [[[18.3, 0.4337], [19.7, 0.4337]], {"stroke": "red"}], [[[20, 0.45218400000000003], [20, 0.455616]], {"stroke": "red"}], [[[19.3, 0.4539], [20.7, 0.4539]], {"stroke": "red"}], [[[21, 0.417884], [21, 0.42131599999999997]], {"stroke": "red"}], [[[20.3, 0.4196], [21.7, 0.4196]], {"stroke": "red"}], [[[22, 0.417084], [22, 0.420516]], {"stroke": "red"}], [[[21.3, 0.4188], [22.7, 0.4188]], {"stroke": "red"}], [[[23, 0.471084], [23, 0.474516]], {"stroke": "red"}], [[[22.3, 0.4728], [23.7, 0.4728]], {"stroke": "red"}], [[[24, 0.456384], [24, 0.459816]], {"stroke": "red"}], [[[23.3, 0.4581], [24.7, 0.4581]], {"stroke": "red"}], [[[25, 0.418484], [25, 0.421916]], {"stroke": "red"}], [[[24.3, 0.4202], [25.7, 0.4202]], {"stroke": "red"}], [[[26, 0.428784], [26, 0.432216]], {"stroke": "red"}], [[[25.3, 0.4305], [26.7, 0.4305]], {"stroke": "red"}], [[[27, 0.46228400000000003], [27, 0.465716]], {"stroke": "red"}], [[[26.3, 0.464], [27.7, 0.464]], {"stroke": "red"}], [[[28, 0.414284], [28, 0.417716]], {"stroke": "red"}], [[[27.3, 0.416], [28.7, 0.416]], {"stroke": "red"}], [[[29, 0.457084], [29, 0.460516]], {"stroke": "red"}], [[[28.3, 0.4588], [29.7, 0.4588]], {"stroke": "red"}], [[[30, 0.457684], [30, 0.46111599999999997]], {"stroke": "red"}], [[[29.3, 0.4594], [30.7, 0.4594]], {"stroke": "red"}], [[[31, 0.460584], [31, 0.464016]], {"stroke": "red"}], [[[30.3, 0.4623], [31.7, 0.4623]], {"stroke": "red"}], [[[32, 0.462084], [32, 0.465516]], {"stroke": "red"}], [[[31.3, 0.4638], [32.7, 0.4638]], {"stroke": "red"}], [[[33, 0.462584], [33, 0.466016]], {"stroke": "red"}], [[[32.3, 0.4643], [33.7, 0.4643]], {"stroke": "red"}], [[[34, 0.465084], [34, 0.468516]], {"stroke": "red"}], [[[33.3, 0.4668], [34.7, 0.4668]], {"stroke": "red"}], [[[35, 0.439884], [35, 0.443316]], {"stroke": "red"}], [[[34.3, 0.4416], [35.7, 0.4416]], {"stroke": "red"}], [[[36, 0.472084], [36, 0.475516]], {"stroke": "red"}], [[[35.3, 0.4738], [36.7, 0.4738]], {"stroke": "red"}], [[[37, 0.477584], [37, 0.481016]], {"stroke": "red"}], [[[36.3, 0.4793], [37.7, 0.4793]], {"stroke": "red"}], [[[38, 0.467084], [38, 0.470516]], {"stroke": "red"}], [[[37.3, 0.4688], [38.7, 0.4688]], {"stroke": "red"}], [[[39, 0.423484], [39, 0.426916]], {"stroke": "red"}], [[[38.3, 0.4252], [39.7, 0.4252]], {"stroke": "red"}], [[[40, 0.451984], [40, 0.455416]], {"stroke": "red"}], [[[39.3, 0.4537], [40.7, 0.4537]], {"stroke": "red"}], [[[41, 0.441884], [41, 0.445316]], {"stroke": "red"}], [[[40.3, 0.4436], [41.7, 0.4436]], {"stroke": "red"}], [[[42, 0.457384], [42, 0.460816]], {"stroke": "red"}], [[[41.3, 0.4591], [42.7, 0.4591]], {"stroke": "red"}], [[[43, 0.455284], [43, 0.458716]], {"stroke": "red"}], [[[42.3, 0.457], [43.7, 0.457]], {"stroke": "red"}], [[[44, 0.416984], [44, 0.420416]], {"stroke": "red"}], [[[43.3, 0.4187], [44.7, 0.4187]], {"stroke": "red"}], [[[45, 0.451984], [45, 0.455416]], {"stroke": "red"}], [[[44.3, 0.4537], [45.7, 0.4537]], {"stroke": "red"}], [[[46, 0.436984], [46, 0.440416]], {"stroke": "red"}], [[[45.3, 0.4387], [46.7, 0.4387]], {"stroke": "red"}], [[[47, 0.430384], [47, 0.433816]], {"stroke": "red"}], [[[46.3, 0.4321], [47.7, 0.4321]], {"stroke": "red"}], [[[48, 0.46228400000000003], [48, 0.465716]], {"stroke": "red"}], [[[47.3, 0.464], [48.7, 0.464]], {"stroke": "red"}], [[[49, 0.442484], [49, 0.445916]], {"stroke": "red"}], [[[48.3, 0.4442], [49.7, 0.4442]], {"stroke": "red"}], [[[50, 0.443284], [50, 0.446716]], {"stroke": "red"}], [[[49.3, 0.445], [50.7, 0.445]], {"stroke": "red"}], [[[51, 0.437984], [51, 0.441416]], {"stroke": "red"}], [[[50.3, 0.4397], [51.7, 0.4397]], {"stroke": "red"}], [[[52, 0.452084], [52, 0.455516]], {"stroke": "red"}], [[[51.3, 0.4538], [52.7, 0.4538]], {"stroke": "red"}], [[[53, 0.420484], [53, 0.423916]], {"stroke": "red"}], [[[52.3, 0.4222], [53.7, 0.4222]], {"stroke": "red"}], [[[54, 0.46628400000000003], [54, 0.469716]], {"stroke": "red"}], [[[53.3, 0.468], [54.7, 0.468]], {"stroke": "red"}], [[[55, 0.463084], [55, 0.466516]], {"stroke": "red"}], [[[54.3, 0.4648], [55.7, 0.4648]], {"stroke": "red"}], [[[56, 0.465884], [56, 0.469316]], {"stroke": "red"}], [[[55.3, 0.4676], [56.7, 0.4676]], {"stroke": "red"}], [[[57, 0.427084], [57, 0.430516]], {"stroke": "red"}], [[[56.3, 0.4288], [57.7, 0.4288]], {"stroke": "red"}], [[[58, 0.456084], [58, 0.459516]], {"stroke": "red"}], [[[57.3, 0.4578], [58.7, 0.4578]], {"stroke": "red"}], [[[59, 0.420884], [59, 0.42431599999999997]], {"stroke": "red"}], [[[58.3, 0.4226], [59.7, 0.4226]], {"stroke": "red"}], [[[60, 0.453584], [60, 0.457016]], {"stroke": "red"}], [[[59.3, 0.4553], [60.7, 0.4553]], {"stroke": "red"}], [[[61, 0.44158400000000003], [61, 0.445016]], {"stroke": "red"}], [[[60.3, 0.4433], [61.7, 0.4433]], {"stroke": "red"}], [[[62, 0.421384], [62, 0.42481599999999997]], {"stroke": "red"}], [[[61.3, 0.4231], [62.7, 0.4231]], {"stroke": "red"}], [[[63, 0.440284], [63, 0.443716]], {"stroke": "red"}], [[[62.3, 0.442], [63.7, 0.442]], {"stroke": "red"}], [[[64, 0.475684], [64, 0.479116]], {"stroke": "red"}], [[[63.3, 0.4774], [64.7, 0.4774]], {"stroke": "red"}], [[[65, 0.461984], [65, 0.465416]], {"stroke": "red"}], [[[64.3, 0.4637], [65.7, 0.4637]], {"stroke": "red"}], [[[66, 0.457184], [66, 0.46061599999999997]], {"stroke": "red"}], [[[65.3, 0.4589], [66.7, 0.4589]], {"stroke": "red"}], [[[67, 0.425384], [67, 0.428816]], {"stroke": "red"}], [[[66.3, 0.4271], [67.7, 0.4271]], {"stroke": "red"}], [[[68, 0.483284], [68, 0.486716]], {"stroke": "red"}], [[[67.3, 0.485], [68.7, 0.485]], {"stroke": "red"}], [[[69, 0.434984], [69, 0.438416]], {"stroke": "red"}], [[[68.3, 0.4367], [69.7, 0.4367]], {"stroke": "red"}], [[[70, 0.417684], [70, 0.421116]], {"stroke": "red"}], [[[69.3, 0.4194], [70.7, 0.4194]], {"stroke": "red"}], [[[71, 0.434284], [71, 0.437716]], {"stroke": "red"}], [[[70.3, 0.436], [71.7, 0.436]], {"stroke": "red"}], [[[72, 0.457484], [72, 0.460916]], {"stroke": "red"}], [[[71.3, 0.4592], [72.7, 0.4592]], {"stroke": "red"}], [[[73, 0.444484], [73, 0.447916]], {"stroke": "red"}], [[[72.3, 0.4462], [73.7, 0.4462]], {"stroke": "red"}], [[[74, 0.455684], [74, 0.45911599999999997]], {"stroke": "red"}], [[[73.3, 0.4574], [74.7, 0.4574]], {"stroke": "red"}], [[[75, 0.435184], [75, 0.438616]], {"stroke": "red"}], [[[74.3, 0.4369], [75.7, 0.4369]], {"stroke": "red"}], [[[76, 0.435584], [76, 0.439016]], {"stroke": "red"}], [[[75.3, 0.4373], [76.7, 0.4373]], {"stroke": "red"}], [[[77, 0.464684], [77, 0.468116]], {"stroke": "red"}], [[[76.3, 0.4664], [77.7, 0.4664]], {"stroke": "red"}], [[[78, 0.441984], [78, 0.445416]], {"stroke": "red"}], [[[77.3, 0.4437], [78.7, 0.4437]], {"stroke": "red"}], [[[79, 0.466484], [79, 0.469916]], {"stroke": "red"}], [[[78.3, 0.4682], [79.7, 0.4682]], {"stroke": "red"}], [[[80, 0.422784], [80, 0.426216]], {"stroke": "red"}], [[[79.3, 0.4245], [80.7, 0.4245]], {"stroke": "red"}], [[[81, 0.433684], [81, 0.437116]], {"stroke": "red"}], [[[80.3, 0.4354], [81.7, 0.4354]], {"stroke": "red"}], [[[82, 0.483284], [82, 0.486716]], {"stroke": "red"}], [[[81.3, 0.485], [82.7, 0.485]], {"stroke": "red"}], [[[83, 0.459884], [83, 0.463316]], {"stroke": "red"}], [[[82.3, 0.4616], [83.7, 0.4616]], {"stroke": "red"}], [[[84, 0.476784], [84, 0.480216]], {"stroke": "red"}], [[[83.3, 0.4785], [84.7, 0.4785]], {"stroke": "red"}], [[[85, 0.416784], [85, 0.420216]], {"stroke": "red"}], [[[84.3, 0.4185], [85.7, 0.4185]], {"stroke": "red"}], [[[86, 0.449284], [86, 0.452716]], {"stroke": "red"}], [[[85.3, 0.451], [86.7, 0.451]], {"stroke": "red"}], [[[87, 0.447084], [87, 0.45051599999999997]], {"stroke": "red"}], [[[86.3, 0.4488], [87.7, 0.4488]], {"stroke": "red"}], [[[88, 0.432284], [88, 0.435716]], {"stroke": "red"}], [[[87.3, 0.434], [88.7, 0.434]], {"stroke": "red"}], [[[89, 0.440884], [89, 0.444316]], {"stroke": "red"}], [[[88.3, 0.4426], [89.7, 0.4426]], {"stroke": "red"}], [[[90, 0.460784], [90, 0.464216]], {"stroke": "red"}], [[[89.3, 0.4625], [90.7, 0.4625]], {"stroke": "red"}], [[[91, 0.45418400000000003], [91, 0.457616]], {"stroke": "red"}], [[[90.3, 0.4559], [91.7, 0.4559]], {"stroke": "red"}], [[[92, 0.421384], [92, 0.42481599999999997]], {"stroke": "red"}], [[[91.3, 0.4231], [92.7, 0.4231]], {"stroke": "red"}], [[[93, 0.452284], [93, 0.455716]], {"stroke": "red"}], [[[92.3, 0.454], [93.7, 0.454]], {"stroke": "red"}], [[[94, 0.450984], [94, 0.454416]], {"stroke": "red"}], [[[93.3, 0.4527], [94.7, 0.4527]], {"stroke": "red"}], [[[95, 0.428684], [95, 0.432116]], {"stroke": "red"}], [[[94.3, 0.4304], [95.7, 0.4304]], {"stroke": "red"}], [[[96, 0.470084], [96, 0.473516]], {"stroke": "red"}], [[[95.3, 0.4718], [96.7, 0.4718]], {"stroke": "red"}], [[[97, 0.465184], [97, 0.468616]], {"stroke": "red"}], [[[96.3, 0.4669], [97.7, 0.4669]], {"stroke": "red"}], [[[98, 0.473484], [98, 0.476916]], {"stroke": "red"}], [[[97.3, 0.4752], [98.7, 0.4752]], {"stroke": "red"}], [[[99, 0.421184], [99, 0.424616]], {"stroke": "red"}], [[[98.3, 0.4229], [99.7, 0.4229]], {"stroke": "red"}], [[[100, 0.413284], [100, 0.416716]], {"stroke": "red"}], [[[99.3, 0.415], [100.7, 0.415]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir la valeur exacte la plus proche parmis les choix suivant.
Kwyk vous donne accès à plus de 8 000 exercices auto-corrigés en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.
Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.
En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.
Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.
En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Exercices de Mathématiques : préparer les examens
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie