On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.39599999999999996, 0.564]], "scale": [6.0, 2678.571428571429], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.41000000000000003], "0,41", "left", {"font-size": 13}]], "path": [[[[0, 0.48], [100, 0.48]]], [[[1, 0.448152], [1, 0.451848]], {"stroke": "red"}], [[[0.29999999999999993, 0.45], [1.7000000000000002, 0.45]], {"stroke": "red"}], [[[2, 0.48165199999999997], [2, 0.485348]], {"stroke": "red"}], [[[1.2999999999999998, 0.4835], [2.7, 0.4835]], {"stroke": "red"}], [[[3, 0.491352], [3, 0.49504800000000004]], {"stroke": "red"}], [[[2.3, 0.4932], [3.7, 0.4932]], {"stroke": "red"}], [[[4, 0.486652], [4, 0.490348]], {"stroke": "red"}], [[[3.3, 0.4885], [4.7, 0.4885]], {"stroke": "red"}], [[[5, 0.459652], [5, 0.46334800000000004]], {"stroke": "red"}], [[[4.3, 0.4615], [5.7, 0.4615]], {"stroke": "red"}], [[[6, 0.474952], [6, 0.478648]], {"stroke": "red"}], [[[5.3, 0.4768], [6.7, 0.4768]], {"stroke": "red"}], [[[7, 0.479452], [7, 0.483148]], {"stroke": "red"}], [[[6.3, 0.4813], [7.7, 0.4813]], {"stroke": "red"}], [[[8, 0.463752], [8, 0.46744800000000003]], {"stroke": "red"}], [[[7.3, 0.4656], [8.7, 0.4656]], {"stroke": "red"}], [[[9, 0.468852], [9, 0.472548]], {"stroke": "red"}], [[[8.3, 0.4707], [9.7, 0.4707]], {"stroke": "red"}], [[[10, 0.47615199999999996], [10, 0.479848]], {"stroke": "red"}], [[[9.3, 0.478], [10.7, 0.478]], {"stroke": "red"}], [[[11, 0.47265199999999996], [11, 0.476348]], {"stroke": "red"}], [[[10.3, 0.4745], [11.7, 0.4745]], {"stroke": "red"}], [[[12, 0.47415199999999996], [12, 0.477848]], {"stroke": "red"}], [[[11.3, 0.476], [12.7, 0.476]], {"stroke": "red"}], [[[13, 0.48315199999999997], [13, 0.486848]], {"stroke": "red"}], [[[12.3, 0.485], [13.7, 0.485]], {"stroke": "red"}], [[[14, 0.47565199999999996], [14, 0.479348]], {"stroke": "red"}], [[[13.3, 0.4775], [14.7, 0.4775]], {"stroke": "red"}], [[[15, 0.488452], [15, 0.49214800000000003]], {"stroke": "red"}], [[[14.3, 0.4903], [15.7, 0.4903]], {"stroke": "red"}], [[[16, 0.493552], [16, 0.497248]], {"stroke": "red"}], [[[15.3, 0.4954], [16.7, 0.4954]], {"stroke": "red"}], [[[17, 0.45545199999999997], [17, 0.459148]], {"stroke": "red"}], [[[16.3, 0.4573], [17.7, 0.4573]], {"stroke": "red"}], [[[18, 0.49525199999999997], [18, 0.498948]], {"stroke": "red"}], [[[17.3, 0.4971], [18.7, 0.4971]], {"stroke": "red"}], [[[19, 0.476552], [19, 0.480248]], {"stroke": "red"}], [[[18.3, 0.4784], [19.7, 0.4784]], {"stroke": "red"}], [[[20, 0.497652], [20, 0.501348]], {"stroke": "red"}], [[[19.3, 0.4995], [20.7, 0.4995]], {"stroke": "red"}], [[[21, 0.46455199999999996], [21, 0.468248]], {"stroke": "red"}], [[[20.3, 0.4664], [21.7, 0.4664]], {"stroke": "red"}], [[[22, 0.485952], [22, 0.489648]], {"stroke": "red"}], [[[21.3, 0.4878], [22.7, 0.4878]], {"stroke": "red"}], [[[23, 0.508152], [23, 0.511848]], {"stroke": "red"}], [[[22.3, 0.51], [23.7, 0.51]], {"stroke": "red"}], [[[24, 0.485552], [24, 0.489248]], {"stroke": "red"}], [[[23.3, 0.4874], [24.7, 0.4874]], {"stroke": "red"}], [[[25, 0.469252], [25, 0.47294800000000004]], {"stroke": "red"}], [[[24.3, 0.4711], [25.7, 0.4711]], {"stroke": "red"}], [[[26, 0.494452], [26, 0.49814800000000004]], {"stroke": "red"}], [[[25.3, 0.4963], [26.7, 0.4963]], {"stroke": "red"}], [[[27, 0.492652], [27, 0.496348]], {"stroke": "red"}], [[[26.3, 0.4945], [27.7, 0.4945]], {"stroke": "red"}], [[[28, 0.45945199999999997], [28, 0.463148]], {"stroke": "red"}], [[[27.3, 0.4613], [28.7, 0.4613]], {"stroke": "red"}], [[[29, 0.467752], [29, 0.47144800000000003]], {"stroke": "red"}], [[[28.3, 0.4696], [29.7, 0.4696]], {"stroke": "red"}], [[[30, 0.48775199999999996], [30, 0.491448]], {"stroke": "red"}], [[[29.3, 0.4896], [30.7, 0.4896]], {"stroke": "red"}], [[[31, 0.481052], [31, 0.484748]], {"stroke": "red"}], [[[30.3, 0.4829], [31.7, 0.4829]], {"stroke": "red"}], [[[32, 0.454752], [32, 0.458448]], {"stroke": "red"}], [[[31.3, 0.4566], [32.7, 0.4566]], {"stroke": "red"}], [[[33, 0.455652], [33, 0.45934800000000003]], {"stroke": "red"}], [[[32.3, 0.4575], [33.7, 0.4575]], {"stroke": "red"}], [[[34, 0.496452], [34, 0.500148]], {"stroke": "red"}], [[[33.3, 0.4983], [34.7, 0.4983]], {"stroke": "red"}], [[[35, 0.475752], [35, 0.47944800000000004]], {"stroke": "red"}], [[[34.3, 0.4776], [35.7, 0.4776]], {"stroke": "red"}], [[[36, 0.485352], [36, 0.48904800000000004]], {"stroke": "red"}], [[[35.3, 0.4872], [36.7, 0.4872]], {"stroke": "red"}], [[[37, 0.508152], [37, 0.511848]], {"stroke": "red"}], [[[36.3, 0.51], [37.7, 0.51]], {"stroke": "red"}], [[[38, 0.5039520000000001], [38, 0.507648]], {"stroke": "red"}], [[[37.3, 0.5058], [38.7, 0.5058]], {"stroke": "red"}], [[[39, 0.467352], [39, 0.471048]], {"stroke": "red"}], [[[38.3, 0.4692], [39.7, 0.4692]], {"stroke": "red"}], [[[40, 0.479552], [40, 0.483248]], {"stroke": "red"}], [[[39.3, 0.4814], [40.7, 0.4814]], {"stroke": "red"}], [[[41, 0.482052], [41, 0.485748]], {"stroke": "red"}], [[[40.3, 0.4839], [41.7, 0.4839]], {"stroke": "red"}], [[[42, 0.46255199999999996], [42, 0.466248]], {"stroke": "red"}], [[[41.3, 0.4644], [42.7, 0.4644]], {"stroke": "red"}], [[[43, 0.47315199999999996], [43, 0.476848]], {"stroke": "red"}], [[[42.3, 0.475], [43.7, 0.475]], {"stroke": "red"}], [[[44, 0.48065199999999997], [44, 0.484348]], {"stroke": "red"}], [[[43.3, 0.4825], [44.7, 0.4825]], {"stroke": "red"}], [[[45, 0.492652], [45, 0.496348]], {"stroke": "red"}], [[[44.3, 0.4945], [45.7, 0.4945]], {"stroke": "red"}], [[[46, 0.46715199999999996], [46, 0.470848]], {"stroke": "red"}], [[[45.3, 0.469], [46.7, 0.469]], {"stroke": "red"}], [[[47, 0.491352], [47, 0.49504800000000004]], {"stroke": "red"}], [[[46.3, 0.4932], [47.7, 0.4932]], {"stroke": "red"}], [[[48, 0.47005199999999997], [48, 0.473748]], {"stroke": "red"}], [[[47.3, 0.4719], [48.7, 0.4719]], {"stroke": "red"}], [[[49, 0.478252], [49, 0.48194800000000004]], {"stroke": "red"}], [[[48.3, 0.4801], [49.7, 0.4801]], {"stroke": "red"}], [[[50, 0.48275199999999996], [50, 0.486448]], {"stroke": "red"}], [[[49.3, 0.4846], [50.7, 0.4846]], {"stroke": "red"}], [[[51, 0.483052], [51, 0.486748]], {"stroke": "red"}], [[[50.3, 0.4849], [51.7, 0.4849]], {"stroke": "red"}], [[[52, 0.473052], [52, 0.476748]], {"stroke": "red"}], [[[51.3, 0.4749], [52.7, 0.4749]], {"stroke": "red"}], [[[53, 0.48025199999999996], [53, 0.483948]], {"stroke": "red"}], [[[52.3, 0.4821], [53.7, 0.4821]], {"stroke": "red"}], [[[54, 0.465752], [54, 0.46944800000000003]], {"stroke": "red"}], [[[53.3, 0.4676], [54.7, 0.4676]], {"stroke": "red"}], [[[55, 0.48215199999999997], [55, 0.485848]], {"stroke": "red"}], [[[54.3, 0.484], [55.7, 0.484]], {"stroke": "red"}], [[[56, 0.453652], [56, 0.45734800000000003]], {"stroke": "red"}], [[[55.3, 0.4555], [56.7, 0.4555]], {"stroke": "red"}], [[[57, 0.46405199999999996], [57, 0.467748]], {"stroke": "red"}], [[[56.3, 0.4659], [57.7, 0.4659]], {"stroke": "red"}], [[[58, 0.48465199999999997], [58, 0.488348]], {"stroke": "red"}], [[[57.3, 0.4865], [58.7, 0.4865]], {"stroke": "red"}], [[[59, 0.44945199999999996], [59, 0.453148]], {"stroke": "red"}], [[[58.3, 0.4513], [59.7, 0.4513]], {"stroke": "red"}], [[[60, 0.49175199999999997], [60, 0.495448]], {"stroke": "red"}], [[[59.3, 0.4936], [60.7, 0.4936]], {"stroke": "red"}], [[[61, 0.477852], [61, 0.48154800000000003]], {"stroke": "red"}], [[[60.3, 0.4797], [61.7, 0.4797]], {"stroke": "red"}], [[[62, 0.477352], [62, 0.48104800000000003]], {"stroke": "red"}], [[[61.3, 0.4792], [62.7, 0.4792]], {"stroke": "red"}], [[[63, 0.508152], [63, 0.511848]], {"stroke": "red"}], [[[62.3, 0.51], [63.7, 0.51]], {"stroke": "red"}], [[[64, 0.48265199999999997], [64, 0.486348]], {"stroke": "red"}], [[[63.3, 0.4845], [64.7, 0.4845]], {"stroke": "red"}], [[[65, 0.490552], [65, 0.494248]], {"stroke": "red"}], [[[64.3, 0.4924], [65.7, 0.4924]], {"stroke": "red"}], [[[66, 0.5040520000000001], [66, 0.507748]], {"stroke": "red"}], [[[65.3, 0.5059], [66.7, 0.5059]], {"stroke": "red"}], [[[67, 0.450752], [67, 0.454448]], {"stroke": "red"}], [[[66.3, 0.4526], [67.7, 0.4526]], {"stroke": "red"}], [[[68, 0.499052], [68, 0.502748]], {"stroke": "red"}], [[[67.3, 0.5009], [68.7, 0.5009]], {"stroke": "red"}], [[[69, 0.501552], [69, 0.5052479999999999]], {"stroke": "red"}], [[[68.3, 0.5034], [69.7, 0.5034]], {"stroke": "red"}], [[[70, 0.47915199999999997], [70, 0.482848]], {"stroke": "red"}], [[[69.3, 0.481], [70.7, 0.481]], {"stroke": "red"}], [[[71, 0.499052], [71, 0.502748]], {"stroke": "red"}], [[[70.3, 0.5009], [71.7, 0.5009]], {"stroke": "red"}], [[[72, 0.45705199999999996], [72, 0.460748]], {"stroke": "red"}], [[[71.3, 0.4589], [72.7, 0.4589]], {"stroke": "red"}], [[[73, 0.468252], [73, 0.47194800000000003]], {"stroke": "red"}], [[[72.3, 0.4701], [73.7, 0.4701]], {"stroke": "red"}], [[[74, 0.49225199999999997], [74, 0.495948]], {"stroke": "red"}], [[[73.3, 0.4941], [74.7, 0.4941]], {"stroke": "red"}], [[[75, 0.467352], [75, 0.471048]], {"stroke": "red"}], [[[74.3, 0.4692], [75.7, 0.4692]], {"stroke": "red"}], [[[76, 0.48725199999999996], [76, 0.490948]], {"stroke": "red"}], [[[75.3, 0.4891], [76.7, 0.4891]], {"stroke": "red"}], [[[77, 0.481052], [77, 0.484748]], {"stroke": "red"}], [[[76.3, 0.4829], [77.7, 0.4829]], {"stroke": "red"}], [[[78, 0.469952], [78, 0.473648]], {"stroke": "red"}], [[[77.3, 0.4718], [78.7, 0.4718]], {"stroke": "red"}], [[[79, 0.497752], [79, 0.501448]], {"stroke": "red"}], [[[78.3, 0.4996], [79.7, 0.4996]], {"stroke": "red"}], [[[80, 0.45145199999999996], [80, 0.455148]], {"stroke": "red"}], [[[79.3, 0.4533], [80.7, 0.4533]], {"stroke": "red"}], [[[81, 0.466752], [81, 0.47044800000000003]], {"stroke": "red"}], [[[80.3, 0.4686], [81.7, 0.4686]], {"stroke": "red"}], [[[82, 0.479552], [82, 0.483248]], {"stroke": "red"}], [[[81.3, 0.4814], [82.7, 0.4814]], {"stroke": "red"}], [[[83, 0.48265199999999997], [83, 0.486348]], {"stroke": "red"}], [[[82.3, 0.4845], [83.7, 0.4845]], {"stroke": "red"}], [[[84, 0.470852], [84, 0.474548]], {"stroke": "red"}], [[[83.3, 0.4727], [84.7, 0.4727]], {"stroke": "red"}], [[[85, 0.463952], [85, 0.467648]], {"stroke": "red"}], [[[84.3, 0.4658], [85.7, 0.4658]], {"stroke": "red"}], [[[86, 0.482852], [86, 0.48654800000000004]], {"stroke": "red"}], [[[85.3, 0.4847], [86.7, 0.4847]], {"stroke": "red"}], [[[87, 0.454352], [87, 0.458048]], {"stroke": "red"}], [[[86.3, 0.4562], [87.7, 0.4562]], {"stroke": "red"}], [[[88, 0.462652], [88, 0.46634800000000004]], {"stroke": "red"}], [[[87.3, 0.4645], [88.7, 0.4645]], {"stroke": "red"}], [[[89, 0.483352], [89, 0.48704800000000004]], {"stroke": "red"}], [[[88.3, 0.4852], [89.7, 0.4852]], {"stroke": "red"}], [[[90, 0.475352], [90, 0.47904800000000003]], {"stroke": "red"}], [[[89.3, 0.4772], [90.7, 0.4772]], {"stroke": "red"}], [[[91, 0.453752], [91, 0.457448]], {"stroke": "red"}], [[[90.3, 0.4556], [91.7, 0.4556]], {"stroke": "red"}], [[[92, 0.5057520000000001], [92, 0.509448]], {"stroke": "red"}], [[[91.3, 0.5076], [92.7, 0.5076]], {"stroke": "red"}], [[[93, 0.459752], [93, 0.463448]], {"stroke": "red"}], [[[92.3, 0.4616], [93.7, 0.4616]], {"stroke": "red"}], [[[94, 0.454352], [94, 0.458048]], {"stroke": "red"}], [[[93.3, 0.4562], [94.7, 0.4562]], {"stroke": "red"}], [[[95, 0.47315199999999996], [95, 0.476848]], {"stroke": "red"}], [[[94.3, 0.475], [95.7, 0.475]], {"stroke": "red"}], [[[96, 0.48075199999999996], [96, 0.484448]], {"stroke": "red"}], [[[95.3, 0.4826], [96.7, 0.4826]], {"stroke": "red"}], [[[97, 0.472752], [97, 0.47644800000000004]], {"stroke": "red"}], [[[96.3, 0.4746], [97.7, 0.4746]], {"stroke": "red"}], [[[98, 0.48475199999999996], [98, 0.488448]], {"stroke": "red"}], [[[97.3, 0.4866], [98.7, 0.4866]], {"stroke": "red"}], [[[99, 0.46965199999999996], [99, 0.473348]], {"stroke": "red"}], [[[98.3, 0.4715], [99.7, 0.4715]], {"stroke": "red"}], [[[100, 0.47715199999999997], [100, 0.480848]], {"stroke": "red"}], [[[99.3, 0.479], [100.7, 0.479]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir
la valeur exacte la plus proche parmis les choix suivant.