Loi de probabilité

Variables aléatoires discrètes finies - Mathématiques ST2S/STD2A

Exercice 1 : Déterminer P(X=N), P(X≤M) et trouver la valeur d'une probabilité inconnue

On considère la loi de probabilité suivante :

\(x_i\)\( -6 \)\( -1 \)\( 1 \)\( 6 \)\( 10 \)
\( P( X = x_i ) \)\( 0,01 \)\( 0,33 \)\( 0,27 \)\( 0,05 \)\( p \)

Déterminer la probabilité \( P\left(X = 1 \right) \).
On donnera la réponse uniquement.
Déterminer la probabilité \( P\left(X \leq 1 \right) \).
On donnera la réponse uniquement.
Calculer la valeur de \( p \).

Exercice 2 : Retrouver une loi aléatoire à partir d'une simulation Python

La fonction simul définie en Python simule une loi de probabilité \( X \), en utilisant une fonction randint qui prend deux entiers \( a\text{, }b \) en paramètres et renvoie un entier aléatoire \( r \) tel que \( a \le r \le b \) .

from random import randint
def simul():
     alea = randint(1, 60)
     if alea <= 22:
          return 0
     if alea >= 33:
          return 1
     return 3
Donner la loi de probabilité de \( X \) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant.
{"data": [["?", "?", "?"], ["?", "?", "?"]], "header_left": ["\\( x_i \\)", "\\( P\\left(X=x_i\\right) \\)"]}
Quelle est l'espérance de cette loi de probabilité ?
On donnera la réponse sous la forme d'un entier ou d'une fraction simplifiée.

Exercice 3 : Déterminer les valeurs prises et la loi de probabilité à partir d'un énoncé (deux tirages avec remise)

On lance deux fois un dé équilibré à six faces. À chaque lancer, on perd 8 € si le résultat est un nombre impair, on gagne 7 € si le résultat est un 4, et on perd 1 € dans les autres cas.
On appelle \( G \) la variable aléatoire égale au gain algébrique en euro obtenu en fin de partie.


Donner les valeurs prises par la variable aléatoire \( G \).
On donnera la liste séparée par des point-virgules. S'il n'y en a aucun, écrire Aucun.
Donner la loi de probabilité de \( G \) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant.
{"header_left": ["\\( g_i \\)", "\\( P\\left(G=g_i\\right) \\)"], "data": [["?", "?", "?", "?", "?", "?"], ["?", "?", "?", "?", "?", "?"]]}

Exercice 4 : Déterminer les valeurs prises et la loi de probabilité à partir d'un énoncé (un seul tirage)

On lance un dé équilibré à six faces. On perd 2 € si le résultat est un nombre supérieur ou égal à 4, on gagne 5 € si le résultat est un 2 et sinon on perd 4 €.
On appelle \( G \) la variable aléatoire égale au gain algébrique en euro obtenu en fin de partie.

Donner les valeurs prises par la variable aléatoire \( G \).
(On donnera la liste séparée par des point-virgules. S'il n'y en a aucun, écrire "Aucun" )
Donner la loi de probabilité de \( G \) en complétant le tableaux suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant.
{"header_left": ["\\(g_i\\)", "\\(P\\left(G=g_i\\right)\\)"], "data": [["?", "?", "?"], ["?", "?", "?"]]}

Exercice 5 : Déterminer une loi de probabilité à partir d'un énoncé (trois tirages sans remise)

Un sac contient douze cubes : quatre gros cubes mauves, deux petits cubes verts, trois gros cubes verts, deux petits cubes blancs et un petit cube mauve. Un enfant prend trois cubes simultanément dans le sac.

On note :
  • \(A\) : l'évènement d'obtenir trois cubes de couleurs différentes.
  • \(B\) : l'évènement d'obtenir au plus un petit cube.
Calculer la probabilité de \(A\).
On arrondira la réponse à \(10^{-2}\).
Calculer la probabilité de \(B\).
On arrondira la réponse à \(10^{-2}\).

Soit \(X\) la variable aléatoire donnant le nombre de petit cube mauve tirés par l'enfant.

Donner la loi de probabilité de \(X\) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant et on arrondira les réponses à \(10^{-2}\).
{"header_left": ["\\(x_i\\)", "\\(P(X=x_i)\\)"], "data": [["?", "?"], ["?", "?"]]}
Calculer l'espérance de \(X\).
On utilisera les valeurs exactes pour faire le calcul, qu'on arrondira à \(10^{-2}\) au dernier moment.
Kwyk vous donne accès à plus de 8 000 exercices auto-corrigés en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.

Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.

En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Exercices de Mathématiques : préparer les examens
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie
False