Les dérivées
Pour aller plus loin (Ancien programme) - Mathématiques ST2S/STD2A
Exercice 1 : Dérivées forme u.v : (ax+b).exp(c*x+d) (avec coefficients appartenant à Q*)
Écrire la dérivée de la fonction \(f\) sous une forme factorisée au maximum.
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \mathbb{R} \) \[ f: x \mapsto \left(\dfrac{2}{7}x + \dfrac{-4}{9}\right)e^{\dfrac{-1}{3}x + \dfrac{1}{2}} \]
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \mathbb{R} \) \[ f: x \mapsto \left(\dfrac{2}{7}x + \dfrac{-4}{9}\right)e^{\dfrac{-1}{3}x + \dfrac{1}{2}} \]
Exercice 2 : Déterminer la dérivée d'une fonction avec un logarithme (avec composition)
Quelle est la dérivée de la fonction \(f\) ?
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \left]0; +\infty\right[ \) \[ f: x \mapsto \left(\operatorname{ln}\left(x\right)\right)^{2} \]
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \left]0; +\infty\right[ \) \[ f: x \mapsto \left(\operatorname{ln}\left(x\right)\right)^{2} \]
Exercice 3 : Etude de fonctions avec exponentielle (x² + ax + b)*exp(x)
Soit la fonction \( f \) définie ci-dessous :
\[ f: x \mapsto - \left(x^{2} -18x + 82\right)e^{x} \]Déterminer la dérivée de \( f \).
Donner l'ensemble des solutions de \( f'(x) \leq 0 \).
On donnera la réponse sous la forme d'un ensemble, par exemple \( \{1; 3\} \) ou \( [2; 4[ \).
On donnera la réponse sous la forme d'un ensemble, par exemple \( \{1; 3\} \) ou \( [2; 4[ \).
Compléter le tableau de variation de \( f \).
Exercice 4 : Déterminer la dérivée d'une fonction compliquée (inclus les fonctions trigonométriques et racines)
Quelle est la dérivée de la fonction \(f\) ?
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \mathbb{R} \) \[ f: x \mapsto \dfrac{\left(-2x -8\right)^{2}}{-2x^{2} -8} \]
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \mathbb{R} \) \[ f: x \mapsto \dfrac{\left(-2x -8\right)^{2}}{-2x^{2} -8} \]
Exercice 5 : Déterminer la dérivée d'une fonction puissance
Quelle est la dérivée de la fonction \(f\) ?
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \mathbb{R} \) \[ f: x \mapsto x^{5} \]
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \mathbb{R} \) \[ f: x \mapsto x^{5} \]
Kwyk vous donne accès à plus de 8 000 exercices auto-corrigés en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.
Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.
En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.
Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.
En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Exercices de Mathématiques : préparer les examens
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie