On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
    
    
                 {"graphInit": {"range": [[-3, 101], [0.416, 0.564]], "scale": [6.0, 3040.5405405405413], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.42], "0,42", "left", {"font-size": 13}], [[0.20000000000000018, 0.43], "0,43", "left", {"font-size": 13}]], "path": [[[[0, 0.49], [100, 0.49]]], [[[1, 0.491872], [1, 0.495128]], {"stroke": "red"}], [[[0.29999999999999993, 0.4935], [1.7000000000000002, 0.4935]], {"stroke": "red"}], [[[2, 0.499372], [2, 0.502628]], {"stroke": "red"}], [[[1.2999999999999998, 0.501], [2.7, 0.501]], {"stroke": "red"}], [[[3, 0.467972], [3, 0.47122800000000004]], {"stroke": "red"}], [[[2.3, 0.4696], [3.7, 0.4696]], {"stroke": "red"}], [[[4, 0.49957199999999996], [4, 0.5028279999999999]], {"stroke": "red"}], [[[3.3, 0.5012], [4.7, 0.5012]], {"stroke": "red"}], [[[5, 0.469172], [5, 0.472428]], {"stroke": "red"}], [[[4.3, 0.4708], [5.7, 0.4708]], {"stroke": "red"}], [[[6, 0.476172], [6, 0.479428]], {"stroke": "red"}], [[[5.3, 0.4778], [6.7, 0.4778]], {"stroke": "red"}], [[[7, 0.474472], [7, 0.47772800000000004]], {"stroke": "red"}], [[[6.3, 0.4761], [7.7, 0.4761]], {"stroke": "red"}], [[[8, 0.490072], [8, 0.49332800000000004]], {"stroke": "red"}], [[[7.3, 0.4917], [8.7, 0.4917]], {"stroke": "red"}], [[[9, 0.512972], [9, 0.5162279999999999]], {"stroke": "red"}], [[[8.3, 0.5146], [9.7, 0.5146]], {"stroke": "red"}], [[[10, 0.481272], [10, 0.484528]], {"stroke": "red"}], [[[9.3, 0.4829], [10.7, 0.4829]], {"stroke": "red"}], [[[11, 0.48087199999999997], [11, 0.484128]], {"stroke": "red"}], [[[10.3, 0.4825], [11.7, 0.4825]], {"stroke": "red"}], [[[12, 0.5181720000000001], [12, 0.521428]], {"stroke": "red"}], [[[11.3, 0.5198], [12.7, 0.5198]], {"stroke": "red"}], [[[13, 0.493372], [13, 0.496628]], {"stroke": "red"}], [[[12.3, 0.495], [13.7, 0.495]], {"stroke": "red"}], [[[14, 0.49757199999999996], [14, 0.5008279999999999]], {"stroke": "red"}], [[[13.3, 0.4992], [14.7, 0.4992]], {"stroke": "red"}], [[[15, 0.518372], [15, 0.521628]], {"stroke": "red"}], [[[14.3, 0.52], [15.7, 0.52]], {"stroke": "red"}], [[[16, 0.474572], [16, 0.47782800000000003]], {"stroke": "red"}], [[[15.3, 0.4762], [16.7, 0.4762]], {"stroke": "red"}], [[[17, 0.47737199999999996], [17, 0.480628]], {"stroke": "red"}], [[[16.3, 0.479], [17.7, 0.479]], {"stroke": "red"}], [[[18, 0.49747199999999997], [18, 0.500728]], {"stroke": "red"}], [[[17.3, 0.4991], [18.7, 0.4991]], {"stroke": "red"}], [[[19, 0.461472], [19, 0.46472800000000003]], {"stroke": "red"}], [[[18.3, 0.4631], [19.7, 0.4631]], {"stroke": "red"}], [[[20, 0.468572], [20, 0.471828]], {"stroke": "red"}], [[[19.3, 0.4702], [20.7, 0.4702]], {"stroke": "red"}], [[[21, 0.48897199999999996], [21, 0.492228]], {"stroke": "red"}], [[[20.3, 0.4906], [21.7, 0.4906]], {"stroke": "red"}], [[[22, 0.494172], [22, 0.49742800000000004]], {"stroke": "red"}], [[[21.3, 0.4958], [22.7, 0.4958]], {"stroke": "red"}], [[[23, 0.49147199999999996], [23, 0.494728]], {"stroke": "red"}], [[[22.3, 0.4931], [23.7, 0.4931]], {"stroke": "red"}], [[[24, 0.49857199999999996], [24, 0.5018279999999999]], {"stroke": "red"}], [[[23.3, 0.5002], [24.7, 0.5002]], {"stroke": "red"}], [[[25, 0.508472], [25, 0.511728]], {"stroke": "red"}], [[[24.3, 0.5101], [25.7, 0.5101]], {"stroke": "red"}], [[[26, 0.488772], [26, 0.492028]], {"stroke": "red"}], [[[25.3, 0.4904], [26.7, 0.4904]], {"stroke": "red"}], [[[27, 0.48747199999999996], [27, 0.490728]], {"stroke": "red"}], [[[26.3, 0.4891], [27.7, 0.4891]], {"stroke": "red"}], [[[28, 0.508772], [28, 0.5120279999999999]], {"stroke": "red"}], [[[27.3, 0.5104], [28.7, 0.5104]], {"stroke": "red"}], [[[29, 0.469572], [29, 0.472828]], {"stroke": "red"}], [[[28.3, 0.4712], [29.7, 0.4712]], {"stroke": "red"}], [[[30, 0.458372], [30, 0.46162800000000004]], {"stroke": "red"}], [[[29.3, 0.46], [30.7, 0.46]], {"stroke": "red"}], [[[31, 0.499972], [31, 0.503228]], {"stroke": "red"}], [[[30.3, 0.5016], [31.7, 0.5016]], {"stroke": "red"}], [[[32, 0.481672], [32, 0.484928]], {"stroke": "red"}], [[[31.3, 0.4833], [32.7, 0.4833]], {"stroke": "red"}], [[[33, 0.485772], [33, 0.489028]], {"stroke": "red"}], [[[32.3, 0.4874], [33.7, 0.4874]], {"stroke": "red"}], [[[34, 0.490772], [34, 0.494028]], {"stroke": "red"}], [[[33.3, 0.4924], [34.7, 0.4924]], {"stroke": "red"}], [[[35, 0.49197199999999996], [35, 0.495228]], {"stroke": "red"}], [[[34.3, 0.4936], [35.7, 0.4936]], {"stroke": "red"}], [[[36, 0.491272], [36, 0.494528]], {"stroke": "red"}], [[[35.3, 0.4929], [36.7, 0.4929]], {"stroke": "red"}], [[[37, 0.484172], [37, 0.48742800000000003]], {"stroke": "red"}], [[[36.3, 0.4858], [37.7, 0.4858]], {"stroke": "red"}], [[[38, 0.47687199999999996], [38, 0.480128]], {"stroke": "red"}], [[[37.3, 0.4785], [38.7, 0.4785]], {"stroke": "red"}], [[[39, 0.46977199999999997], [39, 0.473028]], {"stroke": "red"}], [[[38.3, 0.4714], [39.7, 0.4714]], {"stroke": "red"}], [[[40, 0.47587199999999996], [40, 0.479128]], {"stroke": "red"}], [[[39.3, 0.4775], [40.7, 0.4775]], {"stroke": "red"}], [[[41, 0.46067199999999997], [41, 0.463928]], {"stroke": "red"}], [[[40.3, 0.4623], [41.7, 0.4623]], {"stroke": "red"}], [[[42, 0.518372], [42, 0.521628]], {"stroke": "red"}], [[[41.3, 0.52], [42.7, 0.52]], {"stroke": "red"}], [[[43, 0.47187199999999996], [43, 0.475128]], {"stroke": "red"}], [[[42.3, 0.4735], [43.7, 0.4735]], {"stroke": "red"}], [[[44, 0.48347199999999996], [44, 0.486728]], {"stroke": "red"}], [[[43.3, 0.4851], [44.7, 0.4851]], {"stroke": "red"}], [[[45, 0.518372], [45, 0.521628]], {"stroke": "red"}], [[[44.3, 0.52], [45.7, 0.52]], {"stroke": "red"}], [[[46, 0.494372], [46, 0.497628]], {"stroke": "red"}], [[[45.3, 0.496], [46.7, 0.496]], {"stroke": "red"}], [[[47, 0.495272], [47, 0.498528]], {"stroke": "red"}], [[[46.3, 0.4969], [47.7, 0.4969]], {"stroke": "red"}], [[[48, 0.489372], [48, 0.492628]], {"stroke": "red"}], [[[47.3, 0.491], [48.7, 0.491]], {"stroke": "red"}], [[[49, 0.461072], [49, 0.464328]], {"stroke": "red"}], [[[48.3, 0.4627], [49.7, 0.4627]], {"stroke": "red"}], [[[50, 0.485772], [50, 0.489028]], {"stroke": "red"}], [[[49.3, 0.4874], [50.7, 0.4874]], {"stroke": "red"}], [[[51, 0.485272], [51, 0.488528]], {"stroke": "red"}], [[[50.3, 0.4869], [51.7, 0.4869]], {"stroke": "red"}], [[[52, 0.45877199999999996], [52, 0.462028]], {"stroke": "red"}], [[[51.3, 0.4604], [52.7, 0.4604]], {"stroke": "red"}], [[[53, 0.487872], [53, 0.491128]], {"stroke": "red"}], [[[52.3, 0.4895], [53.7, 0.4895]], {"stroke": "red"}], [[[54, 0.488172], [54, 0.49142800000000003]], {"stroke": "red"}], [[[53.3, 0.4898], [54.7, 0.4898]], {"stroke": "red"}], [[[55, 0.475472], [55, 0.47872800000000004]], {"stroke": "red"}], [[[54.3, 0.4771], [55.7, 0.4771]], {"stroke": "red"}], [[[56, 0.498272], [56, 0.501528]], {"stroke": "red"}], [[[55.3, 0.4999], [56.7, 0.4999]], {"stroke": "red"}], [[[57, 0.458372], [57, 0.46162800000000004]], {"stroke": "red"}], [[[56.3, 0.46], [57.7, 0.46]], {"stroke": "red"}], [[[58, 0.480072], [58, 0.48332800000000004]], {"stroke": "red"}], [[[57.3, 0.4817], [58.7, 0.4817]], {"stroke": "red"}], [[[59, 0.459072], [59, 0.462328]], {"stroke": "red"}], [[[58.3, 0.4607], [59.7, 0.4607]], {"stroke": "red"}], [[[60, 0.47437199999999996], [60, 0.477628]], {"stroke": "red"}], [[[59.3, 0.476], [60.7, 0.476]], {"stroke": "red"}], [[[61, 0.498372], [61, 0.501628]], {"stroke": "red"}], [[[60.3, 0.5], [61.7, 0.5]], {"stroke": "red"}], [[[62, 0.504772], [62, 0.5080279999999999]], {"stroke": "red"}], [[[61.3, 0.5064], [62.7, 0.5064]], {"stroke": "red"}], [[[63, 0.485072], [63, 0.48832800000000004]], {"stroke": "red"}], [[[62.3, 0.4867], [63.7, 0.4867]], {"stroke": "red"}], [[[64, 0.5070720000000001], [64, 0.510328]], {"stroke": "red"}], [[[63.3, 0.5087], [64.7, 0.5087]], {"stroke": "red"}], [[[65, 0.481172], [65, 0.484428]], {"stroke": "red"}], [[[64.3, 0.4828], [65.7, 0.4828]], {"stroke": "red"}], [[[66, 0.499972], [66, 0.503228]], {"stroke": "red"}], [[[65.3, 0.5016], [66.7, 0.5016]], {"stroke": "red"}], [[[67, 0.482072], [67, 0.48532800000000004]], {"stroke": "red"}], [[[66.3, 0.4837], [67.7, 0.4837]], {"stroke": "red"}], [[[68, 0.5122720000000001], [68, 0.515528]], {"stroke": "red"}], [[[67.3, 0.5139], [68.7, 0.5139]], {"stroke": "red"}], [[[69, 0.468972], [69, 0.47222800000000004]], {"stroke": "red"}], [[[68.3, 0.4706], [69.7, 0.4706]], {"stroke": "red"}], [[[70, 0.513472], [70, 0.516728]], {"stroke": "red"}], [[[69.3, 0.5151], [70.7, 0.5151]], {"stroke": "red"}], [[[71, 0.49557199999999996], [71, 0.498828]], {"stroke": "red"}], [[[70.3, 0.4972], [71.7, 0.4972]], {"stroke": "red"}], [[[72, 0.506272], [72, 0.509528]], {"stroke": "red"}], [[[71.3, 0.5079], [72.7, 0.5079]], {"stroke": "red"}], [[[73, 0.502472], [73, 0.505728]], {"stroke": "red"}], [[[72.3, 0.5041], [73.7, 0.5041]], {"stroke": "red"}], [[[74, 0.480672], [74, 0.483928]], {"stroke": "red"}], [[[73.3, 0.4823], [74.7, 0.4823]], {"stroke": "red"}], [[[75, 0.502772], [75, 0.5060279999999999]], {"stroke": "red"}], [[[74.3, 0.5044], [75.7, 0.5044]], {"stroke": "red"}], [[[76, 0.484672], [76, 0.48792800000000003]], {"stroke": "red"}], [[[75.3, 0.4863], [76.7, 0.4863]], {"stroke": "red"}], [[[77, 0.508772], [77, 0.5120279999999999]], {"stroke": "red"}], [[[76.3, 0.5104], [77.7, 0.5104]], {"stroke": "red"}], [[[78, 0.483772], [78, 0.487028]], {"stroke": "red"}], [[[77.3, 0.4854], [78.7, 0.4854]], {"stroke": "red"}], [[[79, 0.48747199999999996], [79, 0.490728]], {"stroke": "red"}], [[[78.3, 0.4891], [79.7, 0.4891]], {"stroke": "red"}], [[[80, 0.480772], [80, 0.484028]], {"stroke": "red"}], [[[79.3, 0.4824], [80.7, 0.4824]], {"stroke": "red"}], [[[81, 0.497872], [81, 0.501128]], {"stroke": "red"}], [[[80.3, 0.4995], [81.7, 0.4995]], {"stroke": "red"}], [[[82, 0.465872], [82, 0.46912800000000004]], {"stroke": "red"}], [[[81.3, 0.4675], [82.7, 0.4675]], {"stroke": "red"}], [[[83, 0.483072], [83, 0.48632800000000004]], {"stroke": "red"}], [[[82.3, 0.4847], [83.7, 0.4847]], {"stroke": "red"}], [[[84, 0.471172], [84, 0.474428]], {"stroke": "red"}], [[[83.3, 0.4728], [84.7, 0.4728]], {"stroke": "red"}], [[[85, 0.486572], [85, 0.48982800000000004]], {"stroke": "red"}], [[[84.3, 0.4882], [85.7, 0.4882]], {"stroke": "red"}], [[[86, 0.480072], [86, 0.48332800000000004]], {"stroke": "red"}], [[[85.3, 0.4817], [86.7, 0.4817]], {"stroke": "red"}], [[[87, 0.479072], [87, 0.48232800000000003]], {"stroke": "red"}], [[[86.3, 0.4807], [87.7, 0.4807]], {"stroke": "red"}], [[[88, 0.496872], [88, 0.500128]], {"stroke": "red"}], [[[87.3, 0.4985], [88.7, 0.4985]], {"stroke": "red"}], [[[89, 0.48897199999999996], [89, 0.492228]], {"stroke": "red"}], [[[88.3, 0.4906], [89.7, 0.4906]], {"stroke": "red"}], [[[90, 0.475672], [90, 0.478928]], {"stroke": "red"}], [[[89.3, 0.4773], [90.7, 0.4773]], {"stroke": "red"}], [[[91, 0.458372], [91, 0.46162800000000004]], {"stroke": "red"}], [[[90.3, 0.46], [91.7, 0.46]], {"stroke": "red"}], [[[92, 0.458372], [92, 0.46162800000000004]], {"stroke": "red"}], [[[91.3, 0.46], [92.7, 0.46]], {"stroke": "red"}], [[[93, 0.465172], [93, 0.468428]], {"stroke": "red"}], [[[92.3, 0.4668], [93.7, 0.4668]], {"stroke": "red"}], [[[94, 0.49857199999999996], [94, 0.5018279999999999]], {"stroke": "red"}], [[[93.3, 0.5002], [94.7, 0.5002]], {"stroke": "red"}], [[[95, 0.495672], [95, 0.49892800000000004]], {"stroke": "red"}], [[[94.3, 0.4973], [95.7, 0.4973]], {"stroke": "red"}], [[[96, 0.481572], [96, 0.48482800000000004]], {"stroke": "red"}], [[[95.3, 0.4832], [96.7, 0.4832]], {"stroke": "red"}], [[[97, 0.515472], [97, 0.518728]], {"stroke": "red"}], [[[96.3, 0.5171], [97.7, 0.5171]], {"stroke": "red"}], [[[98, 0.492372], [98, 0.495628]], {"stroke": "red"}], [[[97.3, 0.494], [98.7, 0.494]], {"stroke": "red"}], [[[99, 0.491672], [99, 0.49492800000000003]], {"stroke": "red"}], [[[98.3, 0.4933], [99.7, 0.4933]], {"stroke": "red"}], [[[100, 0.470072], [100, 0.473328]], {"stroke": "red"}], [[[99.3, 0.4717], [100.7, 0.4717]], {"stroke": "red"}]]}
    Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir
        la valeur exacte la plus proche parmis les choix suivant.