Les dérivées

Pour aller plus loin (Ancien programme) - Mathématiques STMG

Exercice 1 : Étude détaillée d'un polynôme de degré 3 (version simplifiée)

Soit \(f\) une fonction définie pour tout nombre réel \(x\) de l'intervalle \(\left[0; 6\right]\) par : \[f: x \mapsto - x^{3} + 6x^{2} -9x -14\] On notera \(f'\) la fonction dérivée de la fonction \(f\).Déterminer pour tout \(x\) appartenant à l'intervalle \(\left[0; 6\right]\), l'expression de \(f'(x)\).
Parmi les expressions ci-dessous, laquelle correspond à \(f'(x)\) pour tout \(x\) de l'intervalle \(\left[0; 6\right]\) ?
Étudier le signe de \(f'\) pour tout \(x\) appartenant à l'intervalle \(\left[0; 6\right]\).

Essais restants : 2

En déduire le tableau de variations de la fonction \(f\) sur l'intervalle \(\left[0; 6\right]\).

Essais restants : 2

Exercice 2 : Déterminer la dérivée d'une fonction puissance négative

Quelle est la dérivée de la fonction \(f\) ?
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \left]0; +\infty\right[ \) \[ f: x \mapsto x^{- n} \]

Exercice 3 : Déterminer la dérivée d'une fonction polynomiale avec des coefficients littéraux

Quelle est la dérivée de la fonction \(f\) ?
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \mathbb{R} \) \[ f: x \mapsto 2ax^{3} + 8bx^{2} -3ab \]

Exercice 4 : Déterminer la dérivée du produit d'une fonction polynomiale et de la fonction racine carrée

Quelle est la dérivée de la fonction \(f\) ?
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \left]0; +\infty\right[ \) \[ f: x \mapsto \left(5x^{2} + 8x\right)\sqrt{x} \]

Exercice 5 : Retrouver les coefficients d'un polynôme de degré max 3 à partir de la tangente et de 2 points - valeurs entières

La fonction \(f\) représentée par la courbe ci-dessous est de la forme \(f(x) = ax^{3} + bx^{2} + c\).
Cette courbe passe par \(A \left(-1;1\right)\) et \(B \left(1;3\right)\) et sa tangente en \( A \) est tracée en bleu.

Déterminer graphiquement le coefficient directeur de cette tangente, puis trouver \(f\).
On donnera directement l'expression de \(f(x)\) où \(a\), \(b\) et \(c\) sont remplacés par leur valeur.
Kwyk vous donne accès à plus de 8 000 exercices auto-corrigés en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.

Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.

En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Exercices de Mathématiques : préparer les examens
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie
False