On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.456, 0.604]], "scale": [6.0, 3040.5405405405413], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.46], "0\\mbox{,}46", "left", {"font-size": 13}], [[0.20000000000000018, 0.47000000000000003], "0\\mbox{,}47", "left", {"font-size": 13}]], "path": [[[[0, 0.53], [100, 0.53]]], [[[1, 0.532872], [1, 0.5361279999999999]], {"stroke": "red"}], [[[0.29999999999999993, 0.5345], [1.7000000000000002, 0.5345]], {"stroke": "red"}], [[[2, 0.524572], [2, 0.527828]], {"stroke": "red"}], [[[1.2999999999999998, 0.5262], [2.7, 0.5262]], {"stroke": "red"}], [[[3, 0.498372], [3, 0.501628]], {"stroke": "red"}], [[[2.3, 0.5], [3.7, 0.5]], {"stroke": "red"}], [[[4, 0.524572], [4, 0.527828]], {"stroke": "red"}], [[[3.3, 0.5262], [4.7, 0.5262]], {"stroke": "red"}], [[[5, 0.5110720000000001], [5, 0.514328]], {"stroke": "red"}], [[[4.3, 0.5127], [5.7, 0.5127]], {"stroke": "red"}], [[[6, 0.504272], [6, 0.507528]], {"stroke": "red"}], [[[5.3, 0.5059], [6.7, 0.5059]], {"stroke": "red"}], [[[7, 0.520572], [7, 0.523828]], {"stroke": "red"}], [[[6.3, 0.5222], [7.7, 0.5222]], {"stroke": "red"}], [[[8, 0.509372], [8, 0.512628]], {"stroke": "red"}], [[[7.3, 0.511], [8.7, 0.511]], {"stroke": "red"}], [[[9, 0.5344720000000001], [9, 0.537728]], {"stroke": "red"}], [[[8.3, 0.5361], [9.7, 0.5361]], {"stroke": "red"}], [[[10, 0.515672], [10, 0.518928]], {"stroke": "red"}], [[[9.3, 0.5173], [10.7, 0.5173]], {"stroke": "red"}], [[[11, 0.514372], [11, 0.517628]], {"stroke": "red"}], [[[10.3, 0.516], [11.7, 0.516]], {"stroke": "red"}], [[[12, 0.536572], [12, 0.539828]], {"stroke": "red"}], [[[11.3, 0.5382], [12.7, 0.5382]], {"stroke": "red"}], [[[13, 0.498372], [13, 0.501628]], {"stroke": "red"}], [[[12.3, 0.5], [13.7, 0.5]], {"stroke": "red"}], [[[14, 0.523572], [14, 0.526828]], {"stroke": "red"}], [[[13.3, 0.5252], [14.7, 0.5252]], {"stroke": "red"}], [[[15, 0.5583720000000001], [15, 0.561628]], {"stroke": "red"}], [[[14.3, 0.56], [15.7, 0.56]], {"stroke": "red"}], [[[16, 0.5141720000000001], [16, 0.517428]], {"stroke": "red"}], [[[15.3, 0.5158], [16.7, 0.5158]], {"stroke": "red"}], [[[17, 0.536572], [17, 0.539828]], {"stroke": "red"}], [[[16.3, 0.5382], [17.7, 0.5382]], {"stroke": "red"}], [[[18, 0.500372], [18, 0.503628]], {"stroke": "red"}], [[[17.3, 0.502], [18.7, 0.502]], {"stroke": "red"}], [[[19, 0.5494720000000001], [19, 0.552728]], {"stroke": "red"}], [[[18.3, 0.5511], [19.7, 0.5511]], {"stroke": "red"}], [[[20, 0.501572], [20, 0.5048279999999999]], {"stroke": "red"}], [[[19.3, 0.5032], [20.7, 0.5032]], {"stroke": "red"}], [[[21, 0.516972], [21, 0.5202279999999999]], {"stroke": "red"}], [[[20.3, 0.5186], [21.7, 0.5186]], {"stroke": "red"}], [[[22, 0.5583720000000001], [22, 0.561628]], {"stroke": "red"}], [[[21.3, 0.56], [22.7, 0.56]], {"stroke": "red"}], [[[23, 0.511872], [23, 0.5151279999999999]], {"stroke": "red"}], [[[22.3, 0.5135], [23.7, 0.5135]], {"stroke": "red"}], [[[24, 0.502772], [24, 0.5060279999999999]], {"stroke": "red"}], [[[23.3, 0.5044], [24.7, 0.5044]], {"stroke": "red"}], [[[25, 0.5273720000000001], [25, 0.530628]], {"stroke": "red"}], [[[24.3, 0.529], [25.7, 0.529]], {"stroke": "red"}], [[[26, 0.5493720000000001], [26, 0.552628]], {"stroke": "red"}], [[[25.3, 0.551], [26.7, 0.551]], {"stroke": "red"}], [[[27, 0.521972], [27, 0.5252279999999999]], {"stroke": "red"}], [[[26.3, 0.5236], [27.7, 0.5236]], {"stroke": "red"}], [[[28, 0.5060720000000001], [28, 0.509328]], {"stroke": "red"}], [[[27.3, 0.5077], [28.7, 0.5077]], {"stroke": "red"}], [[[29, 0.5261720000000001], [29, 0.529428]], {"stroke": "red"}], [[[28.3, 0.5278], [29.7, 0.5278]], {"stroke": "red"}], [[[30, 0.529072], [30, 0.5323279999999999]], {"stroke": "red"}], [[[29.3, 0.5307], [30.7, 0.5307]], {"stroke": "red"}], [[[31, 0.5011720000000001], [31, 0.504428]], {"stroke": "red"}], [[[30.3, 0.5028], [31.7, 0.5028]], {"stroke": "red"}], [[[32, 0.542672], [32, 0.545928]], {"stroke": "red"}], [[[31.3, 0.5443], [32.7, 0.5443]], {"stroke": "red"}], [[[33, 0.514372], [33, 0.517628]], {"stroke": "red"}], [[[32.3, 0.516], [33.7, 0.516]], {"stroke": "red"}], [[[34, 0.518972], [34, 0.5222279999999999]], {"stroke": "red"}], [[[33.3, 0.5206], [34.7, 0.5206]], {"stroke": "red"}], [[[35, 0.508872], [35, 0.5121279999999999]], {"stroke": "red"}], [[[34.3, 0.5105], [35.7, 0.5105]], {"stroke": "red"}], [[[36, 0.540172], [36, 0.5434279999999999]], {"stroke": "red"}], [[[35.3, 0.5418], [36.7, 0.5418]], {"stroke": "red"}], [[[37, 0.546672], [37, 0.549928]], {"stroke": "red"}], [[[36.3, 0.5483], [37.7, 0.5483]], {"stroke": "red"}], [[[38, 0.530772], [38, 0.534028]], {"stroke": "red"}], [[[37.3, 0.5324], [38.7, 0.5324]], {"stroke": "red"}], [[[39, 0.5423720000000001], [39, 0.545628]], {"stroke": "red"}], [[[38.3, 0.544], [39.7, 0.544]], {"stroke": "red"}], [[[40, 0.525872], [40, 0.5291279999999999]], {"stroke": "red"}], [[[39.3, 0.5275], [40.7, 0.5275]], {"stroke": "red"}], [[[41, 0.5442720000000001], [41, 0.547528]], {"stroke": "red"}], [[[40.3, 0.5459], [41.7, 0.5459]], {"stroke": "red"}], [[[42, 0.5352720000000001], [42, 0.538528]], {"stroke": "red"}], [[[41.3, 0.5369], [42.7, 0.5369]], {"stroke": "red"}], [[[43, 0.520972], [43, 0.5242279999999999]], {"stroke": "red"}], [[[42.3, 0.5226], [43.7, 0.5226]], {"stroke": "red"}], [[[44, 0.513972], [44, 0.5172279999999999]], {"stroke": "red"}], [[[43.3, 0.5156], [44.7, 0.5156]], {"stroke": "red"}], [[[45, 0.5293720000000001], [45, 0.532628]], {"stroke": "red"}], [[[44.3, 0.531], [45.7, 0.531]], {"stroke": "red"}], [[[46, 0.542872], [46, 0.546128]], {"stroke": "red"}], [[[45.3, 0.5445], [46.7, 0.5445]], {"stroke": "red"}], [[[47, 0.5020720000000001], [47, 0.505328]], {"stroke": "red"}], [[[46.3, 0.5037], [47.7, 0.5037]], {"stroke": "red"}], [[[48, 0.531072], [48, 0.5343279999999999]], {"stroke": "red"}], [[[47.3, 0.5327], [48.7, 0.5327]], {"stroke": "red"}], [[[49, 0.5514720000000001], [49, 0.554728]], {"stroke": "red"}], [[[48.3, 0.5531], [49.7, 0.5531]], {"stroke": "red"}], [[[50, 0.521772], [50, 0.5250279999999999]], {"stroke": "red"}], [[[49.3, 0.5234], [50.7, 0.5234]], {"stroke": "red"}], [[[51, 0.5233720000000001], [51, 0.526628]], {"stroke": "red"}], [[[50.3, 0.525], [51.7, 0.525]], {"stroke": "red"}], [[[52, 0.542672], [52, 0.545928]], {"stroke": "red"}], [[[51.3, 0.5443], [52.7, 0.5443]], {"stroke": "red"}], [[[53, 0.531072], [53, 0.5343279999999999]], {"stroke": "red"}], [[[52.3, 0.5327], [53.7, 0.5327]], {"stroke": "red"}], [[[54, 0.5332720000000001], [54, 0.536528]], {"stroke": "red"}], [[[53.3, 0.5349], [54.7, 0.5349]], {"stroke": "red"}], [[[55, 0.5233720000000001], [55, 0.526628]], {"stroke": "red"}], [[[54.3, 0.525], [55.7, 0.525]], {"stroke": "red"}], [[[56, 0.521672], [56, 0.524928]], {"stroke": "red"}], [[[55.3, 0.5233], [56.7, 0.5233]], {"stroke": "red"}], [[[57, 0.530572], [57, 0.533828]], {"stroke": "red"}], [[[56.3, 0.5322], [57.7, 0.5322]], {"stroke": "red"}], [[[58, 0.5262720000000001], [58, 0.529528]], {"stroke": "red"}], [[[57.3, 0.5279], [58.7, 0.5279]], {"stroke": "red"}], [[[59, 0.553872], [59, 0.557128]], {"stroke": "red"}], [[[58.3, 0.5555], [59.7, 0.5555]], {"stroke": "red"}], [[[60, 0.526772], [60, 0.5300279999999999]], {"stroke": "red"}], [[[59.3, 0.5284], [60.7, 0.5284]], {"stroke": "red"}], [[[61, 0.503272], [61, 0.506528]], {"stroke": "red"}], [[[60.3, 0.5049], [61.7, 0.5049]], {"stroke": "red"}], [[[62, 0.542172], [62, 0.5454279999999999]], {"stroke": "red"}], [[[61.3, 0.5438], [62.7, 0.5438]], {"stroke": "red"}], [[[63, 0.524572], [63, 0.527828]], {"stroke": "red"}], [[[62.3, 0.5262], [63.7, 0.5262]], {"stroke": "red"}], [[[64, 0.519772], [64, 0.5230279999999999]], {"stroke": "red"}], [[[63.3, 0.5214], [64.7, 0.5214]], {"stroke": "red"}], [[[65, 0.501772], [65, 0.5050279999999999]], {"stroke": "red"}], [[[64.3, 0.5034], [65.7, 0.5034]], {"stroke": "red"}], [[[66, 0.5182720000000001], [66, 0.521528]], {"stroke": "red"}], [[[65.3, 0.5199], [66.7, 0.5199]], {"stroke": "red"}], [[[67, 0.554172], [67, 0.5574279999999999]], {"stroke": "red"}], [[[66.3, 0.5558], [67.7, 0.5558]], {"stroke": "red"}], [[[68, 0.510472], [68, 0.513728]], {"stroke": "red"}], [[[67.3, 0.5121], [68.7, 0.5121]], {"stroke": "red"}], [[[69, 0.535572], [69, 0.538828]], {"stroke": "red"}], [[[68.3, 0.5372], [69.7, 0.5372]], {"stroke": "red"}], [[[70, 0.524072], [70, 0.5273279999999999]], {"stroke": "red"}], [[[69.3, 0.5257], [70.7, 0.5257]], {"stroke": "red"}], [[[71, 0.516972], [71, 0.5202279999999999]], {"stroke": "red"}], [[[70.3, 0.5186], [71.7, 0.5186]], {"stroke": "red"}], [[[72, 0.533772], [72, 0.537028]], {"stroke": "red"}], [[[71.3, 0.5354], [72.7, 0.5354]], {"stroke": "red"}], [[[73, 0.5253720000000001], [73, 0.528628]], {"stroke": "red"}], [[[72.3, 0.527], [73.7, 0.527]], {"stroke": "red"}], [[[74, 0.498372], [74, 0.501628]], {"stroke": "red"}], [[[73.3, 0.5], [74.7, 0.5]], {"stroke": "red"}], [[[75, 0.521672], [75, 0.524928]], {"stroke": "red"}], [[[74.3, 0.5233], [75.7, 0.5233]], {"stroke": "red"}], [[[76, 0.543672], [76, 0.546928]], {"stroke": "red"}], [[[75.3, 0.5453], [76.7, 0.5453]], {"stroke": "red"}], [[[77, 0.5323720000000001], [77, 0.535628]], {"stroke": "red"}], [[[76.3, 0.534], [77.7, 0.534]], {"stroke": "red"}], [[[78, 0.527072], [78, 0.5303279999999999]], {"stroke": "red"}], [[[77.3, 0.5287], [78.7, 0.5287]], {"stroke": "red"}], [[[79, 0.523672], [79, 0.526928]], {"stroke": "red"}], [[[78.3, 0.5253], [79.7, 0.5253]], {"stroke": "red"}], [[[80, 0.547872], [80, 0.551128]], {"stroke": "red"}], [[[79.3, 0.5495], [80.7, 0.5495]], {"stroke": "red"}], [[[81, 0.5181720000000001], [81, 0.521428]], {"stroke": "red"}], [[[80.3, 0.5198], [81.7, 0.5198]], {"stroke": "red"}], [[[82, 0.523972], [82, 0.5272279999999999]], {"stroke": "red"}], [[[81.3, 0.5256], [82.7, 0.5256]], {"stroke": "red"}], [[[83, 0.5079720000000001], [83, 0.511228]], {"stroke": "red"}], [[[82.3, 0.5096], [83.7, 0.5096]], {"stroke": "red"}], [[[84, 0.5069720000000001], [84, 0.510228]], {"stroke": "red"}], [[[83.3, 0.5086], [84.7, 0.5086]], {"stroke": "red"}], [[[85, 0.5353720000000001], [85, 0.538628]], {"stroke": "red"}], [[[84.3, 0.537], [85.7, 0.537]], {"stroke": "red"}], [[[86, 0.513472], [86, 0.516728]], {"stroke": "red"}], [[[85.3, 0.5151], [86.7, 0.5151]], {"stroke": "red"}], [[[87, 0.5283720000000001], [87, 0.531628]], {"stroke": "red"}], [[[86.3, 0.53], [87.7, 0.53]], {"stroke": "red"}], [[[88, 0.551772], [88, 0.555028]], {"stroke": "red"}], [[[87.3, 0.5534], [88.7, 0.5534]], {"stroke": "red"}], [[[89, 0.540972], [89, 0.5442279999999999]], {"stroke": "red"}], [[[88.3, 0.5426], [89.7, 0.5426]], {"stroke": "red"}], [[[90, 0.518372], [90, 0.521628]], {"stroke": "red"}], [[[89.3, 0.52], [90.7, 0.52]], {"stroke": "red"}], [[[91, 0.514372], [91, 0.517628]], {"stroke": "red"}], [[[90.3, 0.516], [91.7, 0.516]], {"stroke": "red"}], [[[92, 0.525072], [92, 0.5283279999999999]], {"stroke": "red"}], [[[91.3, 0.5267], [92.7, 0.5267]], {"stroke": "red"}], [[[93, 0.5333720000000001], [93, 0.536628]], {"stroke": "red"}], [[[92.3, 0.535], [93.7, 0.535]], {"stroke": "red"}], [[[94, 0.519872], [94, 0.5231279999999999]], {"stroke": "red"}], [[[93.3, 0.5215], [94.7, 0.5215]], {"stroke": "red"}], [[[95, 0.521772], [95, 0.5250279999999999]], {"stroke": "red"}], [[[94.3, 0.5234], [95.7, 0.5234]], {"stroke": "red"}], [[[96, 0.5443720000000001], [96, 0.547628]], {"stroke": "red"}], [[[95.3, 0.546], [96.7, 0.546]], {"stroke": "red"}], [[[97, 0.5452720000000001], [97, 0.548528]], {"stroke": "red"}], [[[96.3, 0.5469], [97.7, 0.5469]], {"stroke": "red"}], [[[98, 0.518772], [98, 0.5220279999999999]], {"stroke": "red"}], [[[97.3, 0.5204], [98.7, 0.5204]], {"stroke": "red"}], [[[99, 0.5242720000000001], [99, 0.527528]], {"stroke": "red"}], [[[98.3, 0.5259], [99.7, 0.5259]], {"stroke": "red"}], [[[100, 0.541172], [100, 0.5444279999999999]], {"stroke": "red"}], [[[99.3, 0.5428], [100.7, 0.5428]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir
la valeur exacte la plus proche parmis les choix suivant.