On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.466, 0.634]], "scale": [6.0, 2678.571428571429], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.47], "0,47", "left", {"font-size": 13}], [[0.20000000000000018, 0.48], "0,48", "left", {"font-size": 13}]], "path": [[[[0, 0.55], [100, 0.55]]], [[[1, 0.5332520000000001], [1, 0.536948]], {"stroke": "red"}], [[[0.29999999999999993, 0.5351], [1.7000000000000002, 0.5351]], {"stroke": "red"}], [[[2, 0.5624520000000001], [2, 0.566148]], {"stroke": "red"}], [[[1.2999999999999998, 0.5643], [2.7, 0.5643]], {"stroke": "red"}], [[[3, 0.5542520000000001], [3, 0.557948]], {"stroke": "red"}], [[[2.3, 0.5561], [3.7, 0.5561]], {"stroke": "red"}], [[[4, 0.551452], [4, 0.555148]], {"stroke": "red"}], [[[3.3, 0.5533], [4.7, 0.5533]], {"stroke": "red"}], [[[5, 0.540552], [5, 0.544248]], {"stroke": "red"}], [[[4.3, 0.5424], [5.7, 0.5424]], {"stroke": "red"}], [[[6, 0.541552], [6, 0.545248]], {"stroke": "red"}], [[[5.3, 0.5434], [6.7, 0.5434]], {"stroke": "red"}], [[[7, 0.571752], [7, 0.575448]], {"stroke": "red"}], [[[6.3, 0.5736], [7.7, 0.5736]], {"stroke": "red"}], [[[8, 0.5462520000000001], [8, 0.549948]], {"stroke": "red"}], [[[7.3, 0.5481], [8.7, 0.5481]], {"stroke": "red"}], [[[9, 0.551552], [9, 0.555248]], {"stroke": "red"}], [[[8.3, 0.5534], [9.7, 0.5534]], {"stroke": "red"}], [[[10, 0.5312520000000001], [10, 0.534948]], {"stroke": "red"}], [[[9.3, 0.5331], [10.7, 0.5331]], {"stroke": "red"}], [[[11, 0.5673520000000001], [11, 0.571048]], {"stroke": "red"}], [[[10.3, 0.5692], [11.7, 0.5692]], {"stroke": "red"}], [[[12, 0.532652], [12, 0.5363479999999999]], {"stroke": "red"}], [[[11.3, 0.5345], [12.7, 0.5345]], {"stroke": "red"}], [[[13, 0.551652], [13, 0.555348]], {"stroke": "red"}], [[[12.3, 0.5535], [13.7, 0.5535]], {"stroke": "red"}], [[[14, 0.5200520000000001], [14, 0.523748]], {"stroke": "red"}], [[[13.3, 0.5219], [14.7, 0.5219]], {"stroke": "red"}], [[[15, 0.5181520000000001], [15, 0.521848]], {"stroke": "red"}], [[[14.3, 0.52], [15.7, 0.52]], {"stroke": "red"}], [[[16, 0.552952], [16, 0.5566479999999999]], {"stroke": "red"}], [[[15.3, 0.5548], [16.7, 0.5548]], {"stroke": "red"}], [[[17, 0.560552], [17, 0.564248]], {"stroke": "red"}], [[[16.3, 0.5624], [17.7, 0.5624]], {"stroke": "red"}], [[[18, 0.538652], [18, 0.5423479999999999]], {"stroke": "red"}], [[[17.3, 0.5405], [18.7, 0.5405]], {"stroke": "red"}], [[[19, 0.542552], [19, 0.546248]], {"stroke": "red"}], [[[18.3, 0.5444], [19.7, 0.5444]], {"stroke": "red"}], [[[20, 0.523652], [20, 0.5273479999999999]], {"stroke": "red"}], [[[19.3, 0.5255], [20.7, 0.5255]], {"stroke": "red"}], [[[21, 0.5591520000000001], [21, 0.562848]], {"stroke": "red"}], [[[20.3, 0.561], [21.7, 0.561]], {"stroke": "red"}], [[[22, 0.575852], [22, 0.579548]], {"stroke": "red"}], [[[21.3, 0.5777], [22.7, 0.5777]], {"stroke": "red"}], [[[23, 0.549552], [23, 0.553248]], {"stroke": "red"}], [[[22.3, 0.5514], [23.7, 0.5514]], {"stroke": "red"}], [[[24, 0.527352], [24, 0.531048]], {"stroke": "red"}], [[[23.3, 0.5292], [24.7, 0.5292]], {"stroke": "red"}], [[[25, 0.544552], [25, 0.548248]], {"stroke": "red"}], [[[24.3, 0.5464], [25.7, 0.5464]], {"stroke": "red"}], [[[26, 0.5483520000000001], [26, 0.552048]], {"stroke": "red"}], [[[25.3, 0.5502], [26.7, 0.5502]], {"stroke": "red"}], [[[27, 0.550952], [27, 0.5546479999999999]], {"stroke": "red"}], [[[26.3, 0.5528], [27.7, 0.5528]], {"stroke": "red"}], [[[28, 0.5601520000000001], [28, 0.563848]], {"stroke": "red"}], [[[27.3, 0.562], [28.7, 0.562]], {"stroke": "red"}], [[[29, 0.554852], [29, 0.5585479999999999]], {"stroke": "red"}], [[[28.3, 0.5567], [29.7, 0.5567]], {"stroke": "red"}], [[[30, 0.540752], [30, 0.5444479999999999]], {"stroke": "red"}], [[[29.3, 0.5426], [30.7, 0.5426]], {"stroke": "red"}], [[[31, 0.5349520000000001], [31, 0.538648]], {"stroke": "red"}], [[[30.3, 0.5368], [31.7, 0.5368]], {"stroke": "red"}], [[[32, 0.544852], [32, 0.5485479999999999]], {"stroke": "red"}], [[[31.3, 0.5467], [32.7, 0.5467]], {"stroke": "red"}], [[[33, 0.561752], [33, 0.565448]], {"stroke": "red"}], [[[32.3, 0.5636], [33.7, 0.5636]], {"stroke": "red"}], [[[34, 0.5753520000000001], [34, 0.579048]], {"stroke": "red"}], [[[33.3, 0.5772], [34.7, 0.5772]], {"stroke": "red"}], [[[35, 0.554952], [35, 0.5586479999999999]], {"stroke": "red"}], [[[34.3, 0.5568], [35.7, 0.5568]], {"stroke": "red"}], [[[36, 0.5340520000000001], [36, 0.537748]], {"stroke": "red"}], [[[35.3, 0.5359], [36.7, 0.5359]], {"stroke": "red"}], [[[37, 0.5473520000000001], [37, 0.551048]], {"stroke": "red"}], [[[36.3, 0.5492], [37.7, 0.5492]], {"stroke": "red"}], [[[38, 0.5543520000000001], [38, 0.558048]], {"stroke": "red"}], [[[37.3, 0.5562], [38.7, 0.5562]], {"stroke": "red"}], [[[39, 0.5682520000000001], [39, 0.571948]], {"stroke": "red"}], [[[38.3, 0.5701], [39.7, 0.5701]], {"stroke": "red"}], [[[40, 0.553552], [40, 0.557248]], {"stroke": "red"}], [[[39.3, 0.5554], [40.7, 0.5554]], {"stroke": "red"}], [[[41, 0.536452], [41, 0.540148]], {"stroke": "red"}], [[[40.3, 0.5383], [41.7, 0.5383]], {"stroke": "red"}], [[[42, 0.5743520000000001], [42, 0.578048]], {"stroke": "red"}], [[[41.3, 0.5762], [42.7, 0.5762]], {"stroke": "red"}], [[[43, 0.5462520000000001], [43, 0.549948]], {"stroke": "red"}], [[[42.3, 0.5481], [43.7, 0.5481]], {"stroke": "red"}], [[[44, 0.5531520000000001], [44, 0.556848]], {"stroke": "red"}], [[[43.3, 0.555], [44.7, 0.555]], {"stroke": "red"}], [[[45, 0.5622520000000001], [45, 0.565948]], {"stroke": "red"}], [[[44.3, 0.5641], [45.7, 0.5641]], {"stroke": "red"}], [[[46, 0.547652], [46, 0.551348]], {"stroke": "red"}], [[[45.3, 0.5495], [46.7, 0.5495]], {"stroke": "red"}], [[[47, 0.5230520000000001], [47, 0.526748]], {"stroke": "red"}], [[[46.3, 0.5249], [47.7, 0.5249]], {"stroke": "red"}], [[[48, 0.532852], [48, 0.5365479999999999]], {"stroke": "red"}], [[[47.3, 0.5347], [48.7, 0.5347]], {"stroke": "red"}], [[[49, 0.558852], [49, 0.5625479999999999]], {"stroke": "red"}], [[[48.3, 0.5607], [49.7, 0.5607]], {"stroke": "red"}], [[[50, 0.520552], [50, 0.5242479999999999]], {"stroke": "red"}], [[[49.3, 0.5224], [50.7, 0.5224]], {"stroke": "red"}], [[[51, 0.577152], [51, 0.5808479999999999]], {"stroke": "red"}], [[[50.3, 0.579], [51.7, 0.579]], {"stroke": "red"}], [[[52, 0.570652], [52, 0.574348]], {"stroke": "red"}], [[[51.3, 0.5725], [52.7, 0.5725]], {"stroke": "red"}], [[[53, 0.5361520000000001], [53, 0.539848]], {"stroke": "red"}], [[[52.3, 0.538], [53.7, 0.538]], {"stroke": "red"}], [[[54, 0.549452], [54, 0.553148]], {"stroke": "red"}], [[[53.3, 0.5513], [54.7, 0.5513]], {"stroke": "red"}], [[[55, 0.539652], [55, 0.5433479999999999]], {"stroke": "red"}], [[[54.3, 0.5415], [55.7, 0.5415]], {"stroke": "red"}], [[[56, 0.5390520000000001], [56, 0.542748]], {"stroke": "red"}], [[[55.3, 0.5409], [56.7, 0.5409]], {"stroke": "red"}], [[[57, 0.556752], [57, 0.560448]], {"stroke": "red"}], [[[56.3, 0.5586], [57.7, 0.5586]], {"stroke": "red"}], [[[58, 0.531352], [58, 0.535048]], {"stroke": "red"}], [[[57.3, 0.5332], [58.7, 0.5332]], {"stroke": "red"}], [[[59, 0.525552], [59, 0.5292479999999999]], {"stroke": "red"}], [[[58.3, 0.5274], [59.7, 0.5274]], {"stroke": "red"}], [[[60, 0.573152], [60, 0.5768479999999999]], {"stroke": "red"}], [[[59.3, 0.575], [60.7, 0.575]], {"stroke": "red"}], [[[61, 0.5533520000000001], [61, 0.557048]], {"stroke": "red"}], [[[60.3, 0.5552], [61.7, 0.5552]], {"stroke": "red"}], [[[62, 0.545452], [62, 0.549148]], {"stroke": "red"}], [[[61.3, 0.5473], [62.7, 0.5473]], {"stroke": "red"}], [[[63, 0.532352], [63, 0.536048]], {"stroke": "red"}], [[[62.3, 0.5342], [63.7, 0.5342]], {"stroke": "red"}], [[[64, 0.570852], [64, 0.574548]], {"stroke": "red"}], [[[63.3, 0.5727], [64.7, 0.5727]], {"stroke": "red"}], [[[65, 0.556552], [65, 0.560248]], {"stroke": "red"}], [[[64.3, 0.5584], [65.7, 0.5584]], {"stroke": "red"}], [[[66, 0.5320520000000001], [66, 0.535748]], {"stroke": "red"}], [[[65.3, 0.5339], [66.7, 0.5339]], {"stroke": "red"}], [[[67, 0.552452], [67, 0.556148]], {"stroke": "red"}], [[[66.3, 0.5543], [67.7, 0.5543]], {"stroke": "red"}], [[[68, 0.550052], [68, 0.5537479999999999]], {"stroke": "red"}], [[[67.3, 0.5519], [68.7, 0.5519]], {"stroke": "red"}], [[[69, 0.533752], [69, 0.5374479999999999]], {"stroke": "red"}], [[[68.3, 0.5356], [69.7, 0.5356]], {"stroke": "red"}], [[[70, 0.5390520000000001], [70, 0.542748]], {"stroke": "red"}], [[[69.3, 0.5409], [70.7, 0.5409]], {"stroke": "red"}], [[[71, 0.544452], [71, 0.548148]], {"stroke": "red"}], [[[70.3, 0.5463], [71.7, 0.5463]], {"stroke": "red"}], [[[72, 0.546852], [72, 0.5505479999999999]], {"stroke": "red"}], [[[71.3, 0.5487], [72.7, 0.5487]], {"stroke": "red"}], [[[73, 0.578152], [73, 0.5818479999999999]], {"stroke": "red"}], [[[72.3, 0.58], [73.7, 0.58]], {"stroke": "red"}], [[[74, 0.527252], [74, 0.530948]], {"stroke": "red"}], [[[73.3, 0.5291], [74.7, 0.5291]], {"stroke": "red"}], [[[75, 0.545852], [75, 0.5495479999999999]], {"stroke": "red"}], [[[74.3, 0.5477], [75.7, 0.5477]], {"stroke": "red"}], [[[76, 0.578152], [76, 0.5818479999999999]], {"stroke": "red"}], [[[75.3, 0.58], [76.7, 0.58]], {"stroke": "red"}], [[[77, 0.538452], [77, 0.542148]], {"stroke": "red"}], [[[76.3, 0.5403], [77.7, 0.5403]], {"stroke": "red"}], [[[78, 0.5472520000000001], [78, 0.550948]], {"stroke": "red"}], [[[77.3, 0.5491], [78.7, 0.5491]], {"stroke": "red"}], [[[79, 0.533352], [79, 0.537048]], {"stroke": "red"}], [[[78.3, 0.5352], [79.7, 0.5352]], {"stroke": "red"}], [[[80, 0.555852], [80, 0.5595479999999999]], {"stroke": "red"}], [[[79.3, 0.5577], [80.7, 0.5577]], {"stroke": "red"}], [[[81, 0.528752], [81, 0.5324479999999999]], {"stroke": "red"}], [[[80.3, 0.5306], [81.7, 0.5306]], {"stroke": "red"}], [[[82, 0.5704520000000001], [82, 0.574148]], {"stroke": "red"}], [[[81.3, 0.5723], [82.7, 0.5723]], {"stroke": "red"}], [[[83, 0.555652], [83, 0.559348]], {"stroke": "red"}], [[[82.3, 0.5575], [83.7, 0.5575]], {"stroke": "red"}], [[[84, 0.5705520000000001], [84, 0.574248]], {"stroke": "red"}], [[[83.3, 0.5724], [84.7, 0.5724]], {"stroke": "red"}], [[[85, 0.5350520000000001], [85, 0.538748]], {"stroke": "red"}], [[[84.3, 0.5369], [85.7, 0.5369]], {"stroke": "red"}], [[[86, 0.541352], [86, 0.545048]], {"stroke": "red"}], [[[85.3, 0.5432], [86.7, 0.5432]], {"stroke": "red"}], [[[87, 0.5563520000000001], [87, 0.560048]], {"stroke": "red"}], [[[86.3, 0.5582], [87.7, 0.5582]], {"stroke": "red"}], [[[88, 0.543452], [88, 0.547148]], {"stroke": "red"}], [[[87.3, 0.5453], [88.7, 0.5453]], {"stroke": "red"}], [[[89, 0.5503520000000001], [89, 0.554048]], {"stroke": "red"}], [[[88.3, 0.5522], [89.7, 0.5522]], {"stroke": "red"}], [[[90, 0.5372520000000001], [90, 0.540948]], {"stroke": "red"}], [[[89.3, 0.5391], [90.7, 0.5391]], {"stroke": "red"}], [[[91, 0.532552], [91, 0.536248]], {"stroke": "red"}], [[[90.3, 0.5344], [91.7, 0.5344]], {"stroke": "red"}], [[[92, 0.538652], [92, 0.5423479999999999]], {"stroke": "red"}], [[[91.3, 0.5405], [92.7, 0.5405]], {"stroke": "red"}], [[[93, 0.560852], [93, 0.5645479999999999]], {"stroke": "red"}], [[[92.3, 0.5627], [93.7, 0.5627]], {"stroke": "red"}], [[[94, 0.543452], [94, 0.547148]], {"stroke": "red"}], [[[93.3, 0.5453], [94.7, 0.5453]], {"stroke": "red"}], [[[95, 0.566052], [95, 0.5697479999999999]], {"stroke": "red"}], [[[94.3, 0.5679], [95.7, 0.5679]], {"stroke": "red"}], [[[96, 0.546552], [96, 0.550248]], {"stroke": "red"}], [[[95.3, 0.5484], [96.7, 0.5484]], {"stroke": "red"}], [[[97, 0.544652], [97, 0.548348]], {"stroke": "red"}], [[[96.3, 0.5465], [97.7, 0.5465]], {"stroke": "red"}], [[[98, 0.559652], [98, 0.563348]], {"stroke": "red"}], [[[97.3, 0.5615], [98.7, 0.5615]], {"stroke": "red"}], [[[99, 0.533452], [99, 0.537148]], {"stroke": "red"}], [[[98.3, 0.5353], [99.7, 0.5353]], {"stroke": "red"}], [[[100, 0.534652], [100, 0.5383479999999999]], {"stroke": "red"}], [[[99.3, 0.5365], [100.7, 0.5365]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir
la valeur exacte la plus proche parmis les choix suivant.