On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.62, 0.7000000000000001]], "scale": [6.0, 5624.999999999995], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.62], "0\\mbox{,}62", "left", {"font-size": 13}], [[0.20000000000000018, 0.63], "0\\mbox{,}63", "left", {"font-size": 13}]], "path": [[[[0, 0.66], [100, 0.66]]], [[[1, 0.67732], [1, 0.67908]], {"stroke": "red"}], [[[0.29999999999999993, 0.6782], [1.7000000000000002, 0.6782]], {"stroke": "red"}], [[[2, 0.67442], [2, 0.67618]], {"stroke": "red"}], [[[1.2999999999999998, 0.6753], [2.7, 0.6753]], {"stroke": "red"}], [[[3, 0.6650200000000001], [3, 0.66678]], {"stroke": "red"}], [[[2.3, 0.6659], [3.7, 0.6659]], {"stroke": "red"}], [[[4, 0.66482], [4, 0.66658]], {"stroke": "red"}], [[[3.3, 0.6657], [4.7, 0.6657]], {"stroke": "red"}], [[[5, 0.66342], [5, 0.66518]], {"stroke": "red"}], [[[4.3, 0.6643], [5.7, 0.6643]], {"stroke": "red"}], [[[6, 0.66752], [6, 0.66928]], {"stroke": "red"}], [[[5.3, 0.6684], [6.7, 0.6684]], {"stroke": "red"}], [[[7, 0.66982], [7, 0.67158]], {"stroke": "red"}], [[[6.3, 0.6707], [7.7, 0.6707]], {"stroke": "red"}], [[[8, 0.67072], [8, 0.67248]], {"stroke": "red"}], [[[7.3, 0.6716], [8.7, 0.6716]], {"stroke": "red"}], [[[9, 0.64602], [9, 0.64778]], {"stroke": "red"}], [[[8.3, 0.6469], [9.7, 0.6469]], {"stroke": "red"}], [[[10, 0.64922], [10, 0.65098]], {"stroke": "red"}], [[[9.3, 0.6501], [10.7, 0.6501]], {"stroke": "red"}], [[[11, 0.66922], [11, 0.67098]], {"stroke": "red"}], [[[10.3, 0.6701], [11.7, 0.6701]], {"stroke": "red"}], [[[12, 0.6801200000000001], [12, 0.68188]], {"stroke": "red"}], [[[11.3, 0.681], [12.7, 0.681]], {"stroke": "red"}], [[[13, 0.64532], [13, 0.64708]], {"stroke": "red"}], [[[12.3, 0.6462], [13.7, 0.6462]], {"stroke": "red"}], [[[14, 0.65712], [14, 0.65888]], {"stroke": "red"}], [[[13.3, 0.658], [14.7, 0.658]], {"stroke": "red"}], [[[15, 0.65382], [15, 0.6555799999999999]], {"stroke": "red"}], [[[14.3, 0.6547], [15.7, 0.6547]], {"stroke": "red"}], [[[16, 0.65102], [16, 0.65278]], {"stroke": "red"}], [[[15.3, 0.6519], [16.7, 0.6519]], {"stroke": "red"}], [[[17, 0.66552], [17, 0.66728]], {"stroke": "red"}], [[[16.3, 0.6664], [17.7, 0.6664]], {"stroke": "red"}], [[[18, 0.65282], [18, 0.6545799999999999]], {"stroke": "red"}], [[[17.3, 0.6537], [18.7, 0.6537]], {"stroke": "red"}], [[[19, 0.66892], [19, 0.6706799999999999]], {"stroke": "red"}], [[[18.3, 0.6698], [19.7, 0.6698]], {"stroke": "red"}], [[[20, 0.63412], [20, 0.63588]], {"stroke": "red"}], [[[19.3, 0.635], [20.7, 0.635]], {"stroke": "red"}], [[[21, 0.67762], [21, 0.67938]], {"stroke": "red"}], [[[20.3, 0.6785], [21.7, 0.6785]], {"stroke": "red"}], [[[22, 0.64452], [22, 0.64628]], {"stroke": "red"}], [[[21.3, 0.6454], [22.7, 0.6454]], {"stroke": "red"}], [[[23, 0.67422], [23, 0.67598]], {"stroke": "red"}], [[[22.3, 0.6751], [23.7, 0.6751]], {"stroke": "red"}], [[[24, 0.65122], [24, 0.65298]], {"stroke": "red"}], [[[23.3, 0.6521], [24.7, 0.6521]], {"stroke": "red"}], [[[25, 0.64942], [25, 0.65118]], {"stroke": "red"}], [[[24.3, 0.6503], [25.7, 0.6503]], {"stroke": "red"}], [[[26, 0.65922], [26, 0.66098]], {"stroke": "red"}], [[[25.3, 0.6601], [26.7, 0.6601]], {"stroke": "red"}], [[[27, 0.66362], [27, 0.66538]], {"stroke": "red"}], [[[26.3, 0.6645], [27.7, 0.6645]], {"stroke": "red"}], [[[28, 0.67662], [28, 0.67838]], {"stroke": "red"}], [[[27.3, 0.6775], [28.7, 0.6775]], {"stroke": "red"}], [[[29, 0.64732], [29, 0.64908]], {"stroke": "red"}], [[[28.3, 0.6482], [29.7, 0.6482]], {"stroke": "red"}], [[[30, 0.65962], [30, 0.66138]], {"stroke": "red"}], [[[29.3, 0.6605], [30.7, 0.6605]], {"stroke": "red"}], [[[31, 0.6458200000000001], [31, 0.64758]], {"stroke": "red"}], [[[30.3, 0.6467], [31.7, 0.6467]], {"stroke": "red"}], [[[32, 0.67872], [32, 0.68048]], {"stroke": "red"}], [[[31.3, 0.6796], [32.7, 0.6796]], {"stroke": "red"}], [[[33, 0.66172], [33, 0.66348]], {"stroke": "red"}], [[[32.3, 0.6626], [33.7, 0.6626]], {"stroke": "red"}], [[[34, 0.66192], [34, 0.6636799999999999]], {"stroke": "red"}], [[[33.3, 0.6628], [34.7, 0.6628]], {"stroke": "red"}], [[[35, 0.66482], [35, 0.66658]], {"stroke": "red"}], [[[34.3, 0.6657], [35.7, 0.6657]], {"stroke": "red"}], [[[36, 0.6609200000000001], [36, 0.66268]], {"stroke": "red"}], [[[35.3, 0.6618], [36.7, 0.6618]], {"stroke": "red"}], [[[37, 0.64222], [37, 0.64398]], {"stroke": "red"}], [[[36.3, 0.6431], [37.7, 0.6431]], {"stroke": "red"}], [[[38, 0.66082], [38, 0.66258]], {"stroke": "red"}], [[[37.3, 0.6617], [38.7, 0.6617]], {"stroke": "red"}], [[[39, 0.6781200000000001], [39, 0.67988]], {"stroke": "red"}], [[[38.3, 0.679], [39.7, 0.679]], {"stroke": "red"}], [[[40, 0.64652], [40, 0.64828]], {"stroke": "red"}], [[[39.3, 0.6474], [40.7, 0.6474]], {"stroke": "red"}], [[[41, 0.66292], [41, 0.6646799999999999]], {"stroke": "red"}], [[[40.3, 0.6638], [41.7, 0.6638]], {"stroke": "red"}], [[[42, 0.65652], [42, 0.65828]], {"stroke": "red"}], [[[41.3, 0.6574], [42.7, 0.6574]], {"stroke": "red"}], [[[43, 0.6569200000000001], [43, 0.65868]], {"stroke": "red"}], [[[42.3, 0.6578], [43.7, 0.6578]], {"stroke": "red"}], [[[44, 0.67082], [44, 0.67258]], {"stroke": "red"}], [[[43.3, 0.6717], [44.7, 0.6717]], {"stroke": "red"}], [[[45, 0.67332], [45, 0.67508]], {"stroke": "red"}], [[[44.3, 0.6742], [45.7, 0.6742]], {"stroke": "red"}], [[[46, 0.65982], [46, 0.66158]], {"stroke": "red"}], [[[45.3, 0.6607], [46.7, 0.6607]], {"stroke": "red"}], [[[47, 0.67272], [47, 0.67448]], {"stroke": "red"}], [[[46.3, 0.6736], [47.7, 0.6736]], {"stroke": "red"}], [[[48, 0.64072], [48, 0.6424799999999999]], {"stroke": "red"}], [[[47.3, 0.6416], [48.7, 0.6416]], {"stroke": "red"}], [[[49, 0.67882], [49, 0.68058]], {"stroke": "red"}], [[[48.3, 0.6797], [49.7, 0.6797]], {"stroke": "red"}], [[[50, 0.63412], [50, 0.63588]], {"stroke": "red"}], [[[49.3, 0.635], [50.7, 0.635]], {"stroke": "red"}], [[[51, 0.64862], [51, 0.65038]], {"stroke": "red"}], [[[50.3, 0.6495], [51.7, 0.6495]], {"stroke": "red"}], [[[52, 0.66232], [52, 0.66408]], {"stroke": "red"}], [[[51.3, 0.6632], [52.7, 0.6632]], {"stroke": "red"}], [[[53, 0.6690200000000001], [53, 0.67078]], {"stroke": "red"}], [[[52.3, 0.6699], [53.7, 0.6699]], {"stroke": "red"}], [[[54, 0.6841200000000001], [54, 0.68588]], {"stroke": "red"}], [[[53.3, 0.685], [54.7, 0.685]], {"stroke": "red"}], [[[55, 0.64102], [55, 0.64278]], {"stroke": "red"}], [[[54.3, 0.6419], [55.7, 0.6419]], {"stroke": "red"}], [[[56, 0.64432], [56, 0.64608]], {"stroke": "red"}], [[[55.3, 0.6452], [56.7, 0.6452]], {"stroke": "red"}], [[[57, 0.6841200000000001], [57, 0.68588]], {"stroke": "red"}], [[[56.3, 0.685], [57.7, 0.685]], {"stroke": "red"}], [[[58, 0.66852], [58, 0.67028]], {"stroke": "red"}], [[[57.3, 0.6694], [58.7, 0.6694]], {"stroke": "red"}], [[[59, 0.67622], [59, 0.67798]], {"stroke": "red"}], [[[58.3, 0.6771], [59.7, 0.6771]], {"stroke": "red"}], [[[60, 0.68022], [60, 0.68198]], {"stroke": "red"}], [[[59.3, 0.6811], [60.7, 0.6811]], {"stroke": "red"}], [[[61, 0.67112], [61, 0.67288]], {"stroke": "red"}], [[[60.3, 0.672], [61.7, 0.672]], {"stroke": "red"}], [[[62, 0.66942], [62, 0.67118]], {"stroke": "red"}], [[[61.3, 0.6703], [62.7, 0.6703]], {"stroke": "red"}], [[[63, 0.64792], [63, 0.64968]], {"stroke": "red"}], [[[62.3, 0.6488], [63.7, 0.6488]], {"stroke": "red"}], [[[64, 0.67382], [64, 0.67558]], {"stroke": "red"}], [[[63.3, 0.6747], [64.7, 0.6747]], {"stroke": "red"}], [[[65, 0.64702], [65, 0.64878]], {"stroke": "red"}], [[[64.3, 0.6479], [65.7, 0.6479]], {"stroke": "red"}], [[[66, 0.65412], [66, 0.65588]], {"stroke": "red"}], [[[65.3, 0.655], [66.7, 0.655]], {"stroke": "red"}], [[[67, 0.65382], [67, 0.6555799999999999]], {"stroke": "red"}], [[[66.3, 0.6547], [67.7, 0.6547]], {"stroke": "red"}], [[[68, 0.65362], [68, 0.65538]], {"stroke": "red"}], [[[67.3, 0.6545], [68.7, 0.6545]], {"stroke": "red"}], [[[69, 0.67252], [69, 0.67428]], {"stroke": "red"}], [[[68.3, 0.6734], [69.7, 0.6734]], {"stroke": "red"}], [[[70, 0.65832], [70, 0.66008]], {"stroke": "red"}], [[[69.3, 0.6592], [70.7, 0.6592]], {"stroke": "red"}], [[[71, 0.64342], [71, 0.64518]], {"stroke": "red"}], [[[70.3, 0.6443], [71.7, 0.6443]], {"stroke": "red"}], [[[72, 0.66622], [72, 0.66798]], {"stroke": "red"}], [[[71.3, 0.6671], [72.7, 0.6671]], {"stroke": "red"}], [[[73, 0.6720200000000001], [73, 0.67378]], {"stroke": "red"}], [[[72.3, 0.6729], [73.7, 0.6729]], {"stroke": "red"}], [[[74, 0.66312], [74, 0.66488]], {"stroke": "red"}], [[[73.3, 0.664], [74.7, 0.664]], {"stroke": "red"}], [[[75, 0.65732], [75, 0.65908]], {"stroke": "red"}], [[[74.3, 0.6582], [75.7, 0.6582]], {"stroke": "red"}], [[[76, 0.65452], [76, 0.65628]], {"stroke": "red"}], [[[75.3, 0.6554], [76.7, 0.6554]], {"stroke": "red"}], [[[77, 0.63522], [77, 0.63698]], {"stroke": "red"}], [[[76.3, 0.6361], [77.7, 0.6361]], {"stroke": "red"}], [[[78, 0.63712], [78, 0.63888]], {"stroke": "red"}], [[[77.3, 0.638], [78.7, 0.638]], {"stroke": "red"}], [[[79, 0.65522], [79, 0.65698]], {"stroke": "red"}], [[[78.3, 0.6561], [79.7, 0.6561]], {"stroke": "red"}], [[[80, 0.64032], [80, 0.64208]], {"stroke": "red"}], [[[79.3, 0.6412], [80.7, 0.6412]], {"stroke": "red"}], [[[81, 0.67242], [81, 0.67418]], {"stroke": "red"}], [[[80.3, 0.6733], [81.7, 0.6733]], {"stroke": "red"}], [[[82, 0.67932], [82, 0.68108]], {"stroke": "red"}], [[[81.3, 0.6802], [82.7, 0.6802]], {"stroke": "red"}], [[[83, 0.66362], [83, 0.66538]], {"stroke": "red"}], [[[82.3, 0.6645], [83.7, 0.6645]], {"stroke": "red"}], [[[84, 0.64222], [84, 0.64398]], {"stroke": "red"}], [[[83.3, 0.6431], [84.7, 0.6431]], {"stroke": "red"}], [[[85, 0.65812], [85, 0.65988]], {"stroke": "red"}], [[[84.3, 0.659], [85.7, 0.659]], {"stroke": "red"}], [[[86, 0.65162], [86, 0.65338]], {"stroke": "red"}], [[[85.3, 0.6525], [86.7, 0.6525]], {"stroke": "red"}], [[[87, 0.64822], [87, 0.64998]], {"stroke": "red"}], [[[86.3, 0.6491], [87.7, 0.6491]], {"stroke": "red"}], [[[88, 0.65532], [88, 0.65708]], {"stroke": "red"}], [[[87.3, 0.6562], [88.7, 0.6562]], {"stroke": "red"}], [[[89, 0.65842], [89, 0.66018]], {"stroke": "red"}], [[[88.3, 0.6593], [89.7, 0.6593]], {"stroke": "red"}], [[[90, 0.67182], [90, 0.67358]], {"stroke": "red"}], [[[89.3, 0.6727], [90.7, 0.6727]], {"stroke": "red"}], [[[91, 0.64442], [91, 0.64618]], {"stroke": "red"}], [[[90.3, 0.6453], [91.7, 0.6453]], {"stroke": "red"}], [[[92, 0.64892], [92, 0.65068]], {"stroke": "red"}], [[[91.3, 0.6498], [92.7, 0.6498]], {"stroke": "red"}], [[[93, 0.66482], [93, 0.66658]], {"stroke": "red"}], [[[92.3, 0.6657], [93.7, 0.6657]], {"stroke": "red"}], [[[94, 0.64892], [94, 0.65068]], {"stroke": "red"}], [[[93.3, 0.6498], [94.7, 0.6498]], {"stroke": "red"}], [[[95, 0.64422], [95, 0.64598]], {"stroke": "red"}], [[[94.3, 0.6451], [95.7, 0.6451]], {"stroke": "red"}], [[[96, 0.65872], [96, 0.66048]], {"stroke": "red"}], [[[95.3, 0.6596], [96.7, 0.6596]], {"stroke": "red"}], [[[97, 0.67682], [97, 0.67858]], {"stroke": "red"}], [[[96.3, 0.6777], [97.7, 0.6777]], {"stroke": "red"}], [[[98, 0.66102], [98, 0.66278]], {"stroke": "red"}], [[[97.3, 0.6619], [98.7, 0.6619]], {"stroke": "red"}], [[[99, 0.66672], [99, 0.66848]], {"stroke": "red"}], [[[98.3, 0.6676], [99.7, 0.6676]], {"stroke": "red"}], [[[100, 0.65552], [100, 0.65728]], {"stroke": "red"}], [[[99.3, 0.6564], [100.7, 0.6564]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir
la valeur exacte la plus proche parmis les choix suivant.