Fonction dérivée et opération : Fonctions polynômes
Analyse : L'étude la dérivation - Mathématiques Spécialité
Exercice 1 : Vocabulaire : coût marginal
Une entreprise familiale de fabrication de peinture hésite à investir dans l'achat d'une nouvelle usine.
Pour se décider, la compagnie a calculé sa fonction de coût total de production de peinture \( C_{t} \) et a obtenu :
\[C_{t}(x) = 85 -8x^{2} + 38x + 0,2x^{3}\]
où \(x\) est une quantité de peinture en hectolitres et \(C_{t}(x)\) est exprimé en euros.
En moyenne, l'entreprise produit 600 hectolitres de peinture par mois.
Exercice 2 : Dériver a/x+bx^3+cx^2+dx+e avec a,b,c,d,e appartenant à [-9;9] \ {0}
Soit la fonction \(f\) définie ci-dessous :
\[ f: x \mapsto \dfrac{7}{x} + 6x^{3} + 8x^{2} + 1x + 2 \]Déterminer la dérivée de \(f\).
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \(\mathbb{R}^{\star}\).
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \(\mathbb{R}^{\star}\).
Exercice 3 : Dériver a/x+bx^2 avec a,b appartenant à [-9;9] \ {0}
Soit la fonction \(f\) définie ci-dessous :
\[ f: x \mapsto \dfrac{-6}{x} -4x^{2} \]Déterminer la dérivée de \(f\).
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \(\mathbb{R}^{\star}\).
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \(\mathbb{R}^{\star}\).
Exercice 4 : Dériver ax^2+bx+c (avec a,b,c appartenant à Q)
Soit la fonction \(f\) définie ci-dessous :
\[ f: x \mapsto - \dfrac{1}{8}x^{2} - \dfrac{3}{5}x - \dfrac{4}{7} \]Déterminer la dérivée de \(f\).
On admettra qu'elle est dérivable sur \(\mathbb{R}\).
On admettra qu'elle est dérivable sur \(\mathbb{R}\).
Exercice 5 : Dériver k(ax+b) avec a,b,k appartenant à [-9;9] \ {0}
Soit la fonction \(f\) définie ci-dessous :
\[ f: x \mapsto 4\left(9x + 9\right) \]Déterminer la dérivée de \(f\).
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \(\mathbb{R}\).
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \(\mathbb{R}\).
Kwyk vous donne accès à plus de 8 000 exercices auto-corrigés en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.
Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.
En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.
Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.
En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Exercices de Mathématiques : préparer les examens
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie