On souhaite vérifier le pourcentage massique de nitrate d’ammonium \( NH_{4}NO_{3} \) d’un engrais
        commercial.
        Pour cela on dissout une masse \( m = 1,5 g \) d’engrais dans de l’eau distillée pour obtenir
        \( V = 140 mL \) de solution. On prélève un volume \( V_A = 20 mL \) de cette solution.
        On ajoute à cela un volume de \( 100 mL \) d’eau distillée avant de procéder au titrage de la
        solution obtenue par une solution d’hydroxyde de sodium \( (Na^{+}_{(aq)},HO^{-}_{(aq)}) \) de concentration
        \( C = 2,00 \times 10^{-1} mol\mathord{\cdot}L^{-1} \). 
        On obtient la courbe de titrage suivante :
        
                 {"init": {"range": [[-1.1, 26.1], [18.699999999999996, 32.400000000000006]], "scale": [22, 40], "hasGraph": true, "xLabel": "\\( V (mL) \\)", "yLabel": "\\( \\sigma ( \\times 10^{-5} S \\cdot m^{-1} ) \\)", "num_points": null, "labelStep": [1, 1], "tickStep": [4, 2], "gridOpacity": 0.1, "gridStep": [1, 1], "axisOpacity": 0.5, "unityLabels": true, "axisArrows": "->", "settings": {"scale": [22, 40]}, "x_max": 25, "x_min": 0, "y_min": 18.699999999999996, "y_max": 31.3, "yLabelPos": [6.5, null]}, "line": [[[-0.1, 23.9], [0.1, 24.1], {"subtype": "segment", "stroke": "#6495ED"}], [[0.9, 23.799999999999997], [1.1, 24.0], {"subtype": "segment", "stroke": "#6495ED"}], [[1.9, 23.7], [2.1, 23.900000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[2.9, 23.599999999999998], [3.1, 23.8], {"subtype": "segment", "stroke": "#6495ED"}], [[3.9, 23.5], [4.1, 23.700000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[4.9, 23.4], [5.1, 23.6], {"subtype": "segment", "stroke": "#6495ED"}], [[5.9, 23.299999999999997], [6.1, 23.5], {"subtype": "segment", "stroke": "#6495ED"}], [[6.9, 23.2], [7.1, 23.400000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[7.9, 23.099999999999998], [8.1, 23.3], {"subtype": "segment", "stroke": "#6495ED"}], [[8.9, 23.0], [9.1, 23.200000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[9.9, 22.9], [10.1, 23.1], {"subtype": "segment", "stroke": "#6495ED"}], [[10.9, 22.799999999999997], [11.1, 23.0], {"subtype": "segment", "stroke": "#6495ED"}], [[11.9, 23.4], [12.1, 23.6], {"subtype": "segment", "stroke": "#6495ED"}], [[12.9, 24.0], [13.1, 24.200000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[13.9, 24.6], [14.1, 24.800000000000004], {"subtype": "segment", "stroke": "#6495ED"}], [[14.9, 25.2], [15.1, 25.400000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[15.9, 25.799999999999997], [16.1, 26.0], {"subtype": "segment", "stroke": "#6495ED"}], [[16.9, 26.4], [17.1, 26.6], {"subtype": "segment", "stroke": "#6495ED"}], [[17.9, 27.0], [18.1, 27.200000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[18.9, 27.6], [19.1, 27.800000000000004], {"subtype": "segment", "stroke": "#6495ED"}], [[19.9, 28.2], [20.1, 28.400000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[20.9, 28.799999999999997], [21.1, 29.0], {"subtype": "segment", "stroke": "#6495ED"}], [[21.9, 29.4], [22.1, 29.6], {"subtype": "segment", "stroke": "#6495ED"}], [[22.9, 30.0], [23.1, 30.200000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[23.9, 30.599999999999998], [24.1, 30.8], {"subtype": "segment", "stroke": "#6495ED"}], [[24.9, 31.2], [25.1, 31.400000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[-0.1, 24.1], [0.1, 23.9], {"subtype": "segment", "stroke": "#6495ED"}], [[0.9, 24.0], [1.1, 23.799999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[1.9, 23.900000000000002], [2.1, 23.7], {"subtype": "segment", "stroke": "#6495ED"}], [[2.9, 23.8], [3.1, 23.599999999999998], {"subtype": "segment", "stroke": "#6495ED"}], [[3.9, 23.700000000000003], [4.1, 23.5], {"subtype": "segment", "stroke": "#6495ED"}], [[4.9, 23.6], [5.1, 23.4], {"subtype": "segment", "stroke": "#6495ED"}], [[5.9, 23.5], [6.1, 23.299999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[6.9, 23.400000000000002], [7.1, 23.2], {"subtype": "segment", "stroke": "#6495ED"}], [[7.9, 23.3], [8.1, 23.099999999999998], {"subtype": "segment", "stroke": "#6495ED"}], [[8.9, 23.200000000000003], [9.1, 23.0], {"subtype": "segment", "stroke": "#6495ED"}], [[9.9, 23.1], [10.1, 22.9], {"subtype": "segment", "stroke": "#6495ED"}], [[10.9, 23.0], [11.1, 22.799999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[11.9, 23.6], [12.1, 23.4], {"subtype": "segment", "stroke": "#6495ED"}], [[12.9, 24.200000000000003], [13.1, 24.0], {"subtype": "segment", "stroke": "#6495ED"}], [[13.9, 24.800000000000004], [14.1, 24.6], {"subtype": "segment", "stroke": "#6495ED"}], [[14.9, 25.400000000000002], [15.1, 25.2], {"subtype": "segment", "stroke": "#6495ED"}], [[15.9, 26.0], [16.1, 25.799999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[16.9, 26.6], [17.1, 26.4], {"subtype": "segment", "stroke": "#6495ED"}], [[17.9, 27.200000000000003], [18.1, 27.0], {"subtype": "segment", "stroke": "#6495ED"}], [[18.9, 27.800000000000004], [19.1, 27.6], {"subtype": "segment", "stroke": "#6495ED"}], [[19.9, 28.400000000000002], [20.1, 28.2], {"subtype": "segment", "stroke": "#6495ED"}], [[20.9, 29.0], [21.1, 28.799999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[21.9, 29.6], [22.1, 29.4], {"subtype": "segment", "stroke": "#6495ED"}], [[22.9, 30.200000000000003], [23.1, 30.0], {"subtype": "segment", "stroke": "#6495ED"}], [[23.9, 30.8], [24.1, 30.599999999999998], {"subtype": "segment", "stroke": "#6495ED"}], [[24.9, 31.400000000000002], [25.1, 31.2], {"subtype": "segment", "stroke": "#6495ED"}]], "plot": []}
    Déterminer graphiquement le volume à l'équivalence \( V_{eq} \). 
On donnera le résultat avec l'unité qui convient.