Succession d’épreuves

Probabilités : Loi binomiale - Mathématiques Spécialité

Exercice 1 : Déterminer une loi de probabilité à partir d'un énoncé (trois tirages sans remise)

Un sac contient treize cubes : deux gros cubes rouges, deux gros cubes blancs, trois gros cubes mauves, quatre petits cubes blancs et deux petits cubes rouges. Un enfant prend trois cubes simultanément dans le sac.

On note :
  • \(A\) : l'évènement d'obtenir trois cubes de couleurs différentes.
  • \(B\) : l'évènement d'obtenir au plus un petit cube.
Calculer la probabilité de \(A\).
On arrondira la réponse à \(10^{-2}\).
Calculer la probabilité de \(B\).
On arrondira la réponse à \(10^{-2}\).

Soit \(X\) la variable aléatoire donnant le nombre de gros cubes rouges tirés par l'enfant.

Donner la loi de probabilité de \(X\) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant et on arrondira les réponses à \(10^{-2}\).
{"header_left": ["\\(x_i\\)", "\\(P(X=x_i)\\)"], "data": [["?", "?", "?"], ["?", "?", "?"]]}
Calculer l'espérance de \(X\).
On utilisera les valeurs exactes pour faire le calcul, qu'on arrondira à \(10^{-2}\) au dernier moment.

Exercice 2 : Déterminer une loi de probabilité à partir d'un énoncé (trois tirages sans remise)

Un sac contient neuf cubes : deux petits cubes verts, deux petits cubes rouges, un gros cube blanc, deux petits cubes blancs et deux gros cubes verts. Un enfant prend trois cubes simultanément dans le sac.

On note :
  • \(A\) : l'évènement d'obtenir trois cubes de couleurs différentes.
  • \(B\) : l'évènement d'obtenir au plus un petit cube.
Calculer la probabilité de \(A\).
On arrondira la réponse à \(10^{-2}\).
Calculer la probabilité de \(B\).
On arrondira la réponse à \(10^{-2}\).

Soit \(X\) la variable aléatoire donnant le nombre de petits cubes rouges tirés par l'enfant.

Donner la loi de probabilité de \(X\) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant et on arrondira les réponses à \(10^{-2}\).
{"data": [["?", "?", "?"], ["?", "?", "?"]], "header_left": ["\\(x_i\\)", "\\(P(X=x_i)\\)"]}
Calculer l'espérance de \(X\).
On utilisera les valeurs exactes pour faire le calcul, qu'on arrondira à \(10^{-2}\) au dernier moment.

Exercice 3 : Déterminer une loi de probabilité à partir d'un énoncé (trois tirages sans remise)

Un sac contient douze cubes : quatre gros cubes noirs, trois gros cubes verts, trois gros cubes gris, un petit cube gris et un petit cube vert. Un enfant prend trois cubes simultanément dans le sac.

On note :
  • \(A\) : l'évènement d'obtenir trois cubes de couleurs différentes.
  • \(B\) : l'évènement d'obtenir au plus un petit cube.
Calculer la probabilité de \(A\).
On arrondira la réponse à \(10^{-2}\).
Calculer la probabilité de \(B\).
On arrondira la réponse à \(10^{-2}\).

Soit \(X\) la variable aléatoire donnant le nombre de petit cube gris tirés par l'enfant.

Donner la loi de probabilité de \(X\) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant et on arrondira les réponses à \(10^{-2}\).
{"header_left": ["\\(x_i\\)", "\\(P(X=x_i)\\)"], "data": [["?", "?"], ["?", "?"]]}
Calculer l'espérance de \(X\).
On utilisera les valeurs exactes pour faire le calcul, qu'on arrondira à \(10^{-2}\) au dernier moment.

Exercice 4 : Déterminer une loi de probabilité à partir d'un énoncé (trois tirages sans remise)

Un sac contient dix cubes : un petit cube rouge, trois gros cubes verts, un petit cube noir, trois gros cubes noirs et deux gros cubes rouges. Un enfant prend trois cubes simultanément dans le sac.

On note :
  • \(A\) : l'évènement d'obtenir trois cubes de couleurs différentes.
  • \(B\) : l'évènement d'obtenir au plus un petit cube.
Calculer la probabilité de \(A\).
On arrondira la réponse à \(10^{-2}\).
Calculer la probabilité de \(B\).
On arrondira la réponse à \(10^{-2}\).

Soit \(X\) la variable aléatoire donnant le nombre de petit cube rouge tirés par l'enfant.

Donner la loi de probabilité de \(X\) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant et on arrondira les réponses à \(10^{-2}\).
{"data": [["?", "?"], ["?", "?"]], "header_left": ["\\(x_i\\)", "\\(P(X=x_i)\\)"]}
Calculer l'espérance de \(X\).
On utilisera les valeurs exactes pour faire le calcul, qu'on arrondira à \(10^{-2}\) au dernier moment.

Exercice 5 : Déterminer une loi de probabilité à partir d'un énoncé (trois tirages sans remise)

Un sac contient onze cubes : trois petits cubes jaunes, un gros cube noir, un gros cube jaune, quatre petits cubes noirs et deux petits cubes verts. Un enfant prend trois cubes simultanément dans le sac.

On note :
  • \(A\) : l'évènement d'obtenir trois cubes de couleurs différentes.
  • \(B\) : l'évènement d'obtenir au plus un petit cube.
Calculer la probabilité de \(A\).
On arrondira la réponse à \(10^{-2}\).
Calculer la probabilité de \(B\).
On arrondira la réponse à \(10^{-2}\).

Soit \(X\) la variable aléatoire donnant le nombre de gros cube noir tirés par l'enfant.

Donner la loi de probabilité de \(X\) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant et on arrondira les réponses à \(10^{-2}\).
{"data": [["?", "?"], ["?", "?"]], "header_left": ["\\(x_i\\)", "\\(P(X=x_i)\\)"]}
Calculer l'espérance de \(X\).
On utilisera les valeurs exactes pour faire le calcul, qu'on arrondira à \(10^{-2}\) au dernier moment.
Kwyk vous donne accès à plus de 8 000 exercices auto-corrigés en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.

Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.

En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Exercices de Mathématiques : préparer les examens
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie
False