Symétrie axiale
Symétrie axiale - Mathématiques 6e
Exercice 1 : Trouver les situations de symétrie axiale - Segments
Parmi les figures suivantes, la ou lesquelles correspondent à une situation de symétrie axiale.
A' et B' sont les symétriques de A et B respectivement par rapport à l'axe ?
- A.
{"init": {"range": [[-7.0, 7.0], [-7.0, 7.0]], "scale": [40, 40]}, "line": [[[-6.0, -6.0], [6.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -5.0], [6.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -4.0], [6.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -3.0], [6.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -2.0], [6.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -1.0], [6.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 0.0], [6.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 1.0], [6.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 2.0], [6.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 3.0], [6.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 4.0], [6.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 5.0], [6.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -6.0], [-6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -6.0], [-5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -6.0], [-4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -6.0], [-3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -6.0], [-2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -6.0], [-1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -6.0], [0.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -6.0], [1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -6.0], [2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -6.0], [3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -6.0], [4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -6.0], [5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, 2.0], [-2.0, 2.0], {"subtype": "segment"}], [[0.0, -1.0], [0.0, 0.0], {"subtype": "segment"}], [[-7.0, -5.0], [5.0, 7.0], {"subtype": "line"}]], "label": [[[-3.0, 2.0], "A", "left", {}], [[-2.0, 2.0], "B", "right", {}], [[0.0, -1.0], "A'", "below", {}], [[0.0, 0.0], "B'", "above", {}]], "circle": [[[-3.0, 2.0], 0.01, {}], [[-2.0, 2.0], 0.01, {}], [[0.0, -1.0], 0.01, {}], [[0.0, 0.0], 0.01, {}]]}
- B.
{"init": {"range": [[-7.0, 7.0], [-7.0, 7.0]], "scale": [40, 40]}, "line": [[[-6.0, -6.0], [6.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -5.0], [6.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -4.0], [6.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -3.0], [6.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -2.0], [6.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -1.0], [6.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 0.0], [6.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 1.0], [6.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 2.0], [6.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 3.0], [6.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 4.0], [6.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 5.0], [6.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -6.0], [-6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -6.0], [-5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -6.0], [-4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -6.0], [-3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -6.0], [-2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -6.0], [-1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -6.0], [0.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -6.0], [1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -6.0], [2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -6.0], [3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -6.0], [4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -6.0], [5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -1.0], [-2.0, 0.0], {"subtype": "segment"}], [[-3.0, -4.0], [-2.0, -3.0], {"subtype": "segment"}], [[7.0, -2.0], [-7.0, -2.0], {"subtype": "line"}]], "label": [[[-3.0, -1.0], "A", "below left", {}], [[-2.0, 0.0], "B", "above right", {}], [[-3.0, -4.0], "A'", "below left", {}], [[-2.0, -3.0], "B'", "above right", {}]], "circle": [[[-3.0, -1.0], 0.01, {}], [[-2.0, 0.0], 0.01, {}], [[-3.0, -4.0], 0.01, {}], [[-2.0, -3.0], 0.01, {}]]}
- C.
{"init": {"range": [[-7.0, 7.0], [-7.0, 7.0]], "scale": [40, 40]}, "line": [[[-6.0, -6.0], [6.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -5.0], [6.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -4.0], [6.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -3.0], [6.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -2.0], [6.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -1.0], [6.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 0.0], [6.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 1.0], [6.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 2.0], [6.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 3.0], [6.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 4.0], [6.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 5.0], [6.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -6.0], [-6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -6.0], [-5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -6.0], [-4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -6.0], [-3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -6.0], [-2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -6.0], [-1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -6.0], [0.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -6.0], [1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -6.0], [2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -6.0], [3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -6.0], [4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -6.0], [5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, 0.0], [-1.0, -3.0], {"subtype": "segment"}], [[3.0, 0.0], [5.0, -3.0], {"subtype": "segment"}], [[2.0, 7.0], [2.0, -7.0], {"subtype": "line"}]], "label": [[[1.0, 0.0], "A", "above right", {}], [[-1.0, -3.0], "B", "below left", {}], [[5.0, -3.0], "A'", "below right", {}], [[3.0, 0.0], "B'", "above left", {}]], "circle": [[[1.0, 0.0], 0.01, {}], [[-1.0, -3.0], 0.01, {}], [[5.0, -3.0], 0.01, {}], [[3.0, 0.0], 0.01, {}]]}
- D.
{"init": {"range": [[-7.0, 7.0], [-7.0, 7.0]], "scale": [40, 40]}, "line": [[[-6.0, -6.0], [6.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -5.0], [6.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -4.0], [6.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -3.0], [6.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -2.0], [6.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -1.0], [6.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 0.0], [6.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 1.0], [6.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 2.0], [6.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 3.0], [6.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 4.0], [6.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 5.0], [6.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -6.0], [-6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -6.0], [-5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -6.0], [-4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -6.0], [-3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -6.0], [-2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -6.0], [-1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -6.0], [0.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -6.0], [1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -6.0], [2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -6.0], [3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -6.0], [4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -6.0], [5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, 0.0], [1.0, 1.0], {"subtype": "segment"}], [[5.0, 0.0], [3.0, 1.0], {"subtype": "segment"}], [[2.0, 7.0], [2.0, -7.0], {"subtype": "line"}]], "label": [[[-1.0, 0.0], "A", "below left", {}], [[1.0, 1.0], "B", "above right", {}], [[5.0, 0.0], "A'", "below right", {}], [[3.0, 1.0], "B'", "above left", {}]], "circle": [[[-1.0, 0.0], 0.01, {}], [[1.0, 1.0], 0.01, {}], [[5.0, 0.0], 0.01, {}], [[3.0, 1.0], 0.01, {}]]}
Exercice 2 : Tracer les axes de symétrie d'une figure complexe
Tracer le ou les axes de symétrie de la figure suivante.
Exercice 3 : Trouver les situations de symétrie axiale - Triangles
Parmi les figures suivantes, lesquelles correspondent à une situation de symétrie axiale.
A', B' et C' sont les symétriques de A, B et C respectivement par rapport à l'axe.
- A.
{"init": {"range": [[-7.0, 7.0], [-7.0, 7.0]], "scale": [40, 40]}, "line": [[[-6.0, -6.0], [6.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -5.0], [6.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -4.0], [6.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -3.0], [6.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -2.0], [6.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -1.0], [6.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 0.0], [6.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 1.0], [6.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 2.0], [6.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 3.0], [6.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 4.0], [6.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 5.0], [6.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -6.0], [-6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -6.0], [-5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -6.0], [-4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -6.0], [-3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -6.0], [-2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -6.0], [-1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -6.0], [0.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -6.0], [1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -6.0], [2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -6.0], [3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -6.0], [4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -6.0], [5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, 0.0], [0.0, 2.0], {"subtype": "segment"}], [[0.0, 2.0], [3.0, 1.0], {"subtype": "segment"}], [[1.0, 0.0], [3.0, 1.0], {"subtype": "segment"}], [[-1.0, -2.0], [-3.0, -1.0], {"subtype": "segment"}], [[-3.0, -1.0], [-2.0, -4.0], {"subtype": "segment"}], [[-1.0, -2.0], [-2.0, -4.0], {"subtype": "segment"}], [[6.0, -7.0], [-7.0, 6.0], {"subtype": "line"}]], "label": [[[1.0, 0.0], "A", "below", {}], [[0.0, 2.0], "B", "above left", {}], [[3.0, 1.0], "C", "right", {}], [[-1.0, -2.0], "A'", "right", {}], [[-3.0, -1.0], "B'", "above left", {}], [[-2.0, -4.0], "C'", "below", {}]], "circle": [[[1.0, 0.0], 0.01, {}], [[0.0, 2.0], 0.01, {}], [[3.0, 1.0], 0.01, {}], [[-1.0, -2.0], 0.01, {}], [[-3.0, -1.0], 0.01, {}], [[-2.0, -4.0], 0.01, {}]]}
- B.
{"init": {"range": [[-7.0, 7.0], [-7.0, 7.0]], "scale": [40, 40]}, "line": [[[-6.0, -6.0], [6.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -5.0], [6.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -4.0], [6.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -3.0], [6.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -2.0], [6.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -1.0], [6.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 0.0], [6.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 1.0], [6.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 2.0], [6.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 3.0], [6.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 4.0], [6.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 5.0], [6.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -6.0], [-6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -6.0], [-5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -6.0], [-4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -6.0], [-3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -6.0], [-2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -6.0], [-1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -6.0], [0.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -6.0], [1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -6.0], [2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -6.0], [3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -6.0], [4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -6.0], [5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, 2.0], [-1.0, 2.0], {"subtype": "segment"}], [[-1.0, 2.0], [2.0, 0.0], {"subtype": "segment"}], [[1.0, 2.0], [2.0, 0.0], {"subtype": "segment"}], [[-2.0, -1.0], [-4.0, -1.0], {"subtype": "segment"}], [[-4.0, -1.0], [-1.0, -3.0], {"subtype": "segment"}], [[-2.0, -1.0], [-1.0, -3.0], {"subtype": "segment"}], [[6.0, -7.0], [-7.0, 6.0], {"subtype": "line"}]], "label": [[[1.0, 2.0], "A", "above right", {}], [[-1.0, 2.0], "B", "left", {}], [[2.0, 0.0], "C", "below right", {}], [[-2.0, -1.0], "A'", "above right", {}], [[-4.0, -1.0], "B'", "left", {}], [[-1.0, -3.0], "C'", "below right", {}]], "circle": [[[1.0, 2.0], 0.01, {}], [[-1.0, 2.0], 0.01, {}], [[2.0, 0.0], 0.01, {}], [[-2.0, -1.0], 0.01, {}], [[-4.0, -1.0], 0.01, {}], [[-1.0, -3.0], 0.01, {}]]}
- C.
{"init": {"range": [[-7.0, 7.0], [-7.0, 7.0]], "scale": [40, 40]}, "line": [[[-6.0, -6.0], [6.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -5.0], [6.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -4.0], [6.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -3.0], [6.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -2.0], [6.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -1.0], [6.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 0.0], [6.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 1.0], [6.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 2.0], [6.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 3.0], [6.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 4.0], [6.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 5.0], [6.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -6.0], [-6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -6.0], [-5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -6.0], [-4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -6.0], [-3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -6.0], [-2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -6.0], [-1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -6.0], [0.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -6.0], [1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -6.0], [2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -6.0], [3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -6.0], [4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -6.0], [5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, 2.0], [-3.0, 0.0], {"subtype": "segment"}], [[-3.0, 0.0], [3.0, 5.0], {"subtype": "segment"}], [[-3.0, 2.0], [3.0, 5.0], {"subtype": "segment"}], [[0.0, -3.0], [5.0, 3.0], {"subtype": "segment"}], [[5.0, 3.0], [2.0, -3.0], {"subtype": "segment"}], [[0.0, -3.0], [2.0, -3.0], {"subtype": "segment"}], [[-7.0, -7.0], [7.0, 7.0], {"subtype": "line"}]], "label": [[[-3.0, 2.0], "A", "left", {}], [[-3.0, 0.0], "B", "below left", {}], [[3.0, 5.0], "C", "above right", {}], [[0.0, -3.0], "A'", "below left", {}], [[5.0, 3.0], "B'", "above right", {}], [[2.0, -3.0], "C'", "below", {}]], "circle": [[[-3.0, 2.0], 0.01, {}], [[-3.0, 0.0], 0.01, {}], [[3.0, 5.0], 0.01, {}], [[0.0, -3.0], 0.01, {}], [[5.0, 3.0], 0.01, {}], [[2.0, -3.0], 0.01, {}]]}
- D.
{"init": {"range": [[-7.01, 7.0], [-7.0, 7.0]], "scale": [40, 40]}, "line": [[[-6.0, -6.0], [6.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -5.0], [6.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -4.0], [6.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -3.0], [6.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -2.0], [6.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -1.0], [6.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 0.0], [6.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 1.0], [6.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 2.0], [6.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 3.0], [6.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 4.0], [6.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 5.0], [6.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, 6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -6.0], [-6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -6.0], [-5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -6.0], [-4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -6.0], [-3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -6.0], [-2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -6.0], [-1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -6.0], [0.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -6.0], [1.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -6.0], [2.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -6.0], [3.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -6.0], [4.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -6.0], [5.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -6.0], [6.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, 3.0], [0.0, 1.0], {"subtype": "segment"}], [[0.0, 1.0], [-1.0, -5.0], {"subtype": "segment"}], [[2.0, 3.0], [-1.0, -5.0], {"subtype": "segment"}], [[-6.0, 3.0], [-4.0, 1.0], {"subtype": "segment"}], [[-4.0, 1.0], [-3.0, -5.0], {"subtype": "segment"}], [[-6.0, 3.0], [-3.0, -5.0], {"subtype": "segment"}], [[-2.0, -7.0], [-2.0, 7.0], {"subtype": "line"}]], "label": [[[2.0, 3.0], "A", "above right", {}], [[0.0, 1.0], "B", "above", {}], [[-1.0, -5.0], "C", "below", {}], [[-6.0, 3.0], "A'", "above left", {}], [[-4.0, 1.0], "B'", "above", {}], [[-3.0, -5.0], "C'", "below", {}]], "circle": [[[2.0, 3.0], 0.01, {}], [[0.0, 1.0], 0.01, {}], [[-1.0, -5.0], 0.01, {}], [[-6.0, 3.0], 0.01, {}], [[-4.0, 1.0], 0.01, {}], [[-3.0, -5.0], 0.01, {}]]}
Exercice 4 : Tracer le symétrique d'une ligne brisée par rapport à deux axes à l'aide d'un quadrillage
Compléter le schéma afin que les droites \( (d1) \) et \( (d2) \) soient des axes de symétrie de la figure.
On n'ajoutera pas d'élément dans la partie contenant la figure initiale.
On n'ajoutera pas d'élément dans la partie contenant la figure initiale.
Exercice 5 : Trouver les situations de symétrie axiale - Figures
Parmi les figures suivantes, lesquelles correspondent à une situation de symétrie axiale par rapport à \( (d) \).
- 1.
{"init": {"range": [[-11.0, 11.0], [-11.0, 11.0]], "scale": [20, 20]}, "line": [[[-10.0, -10.0], [10.0, -10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -9.0], [10.0, -9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -8.0], [10.0, -8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -7.0], [10.0, -7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -6.0], [10.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -5.0], [10.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -4.0], [10.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -3.0], [10.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -2.0], [10.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -1.0], [10.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 0.0], [10.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 1.0], [10.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 2.0], [10.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 3.0], [10.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 4.0], [10.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 5.0], [10.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 6.0], [10.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 7.0], [10.0, 7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 8.0], [10.0, 8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 9.0], [10.0, 9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -10.0], [-10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-9.0, -10.0], [-9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-8.0, -10.0], [-8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-7.0, -10.0], [-7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -10.0], [-6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -10.0], [-5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -10.0], [-4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -10.0], [-3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -10.0], [-2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -10.0], [-1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -10.0], [0.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -10.0], [1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -10.0], [2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -10.0], [3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -10.0], [4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -10.0], [5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -10.0], [6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[7.0, -10.0], [7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[8.0, -10.0], [8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[9.0, -10.0], [9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[10.0, -10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.1, 5.0], [-2.9, 5.0], {}], [[-3.0, 4.9], [-3.0, 5.1], {}], [[4.9, -3.0], [5.1, -3.0], {}], [[5.0, -3.1], [5.0, -2.9], {}], [[11.0, 11.0], [-10.646446609406727, -10.646446609406727], {"subtype": "line"}]], "label": [[[-3.0, 5.0], "C", "above", {}], [[5.0, -3.0], "C'", "above", {}], [[-11.0, -11.0], "(d)", {"subtype": "line"}]], "circle": [[[-3.0, 5.0], 4.0, {}], [[5.0, -3.0], 4.0, {}]]}
- 2.
{"init": {"range": [[-11.0, 11.0], [-11.0, 11.0]], "scale": [20, 20]}, "line": [[[-10.0, -10.0], [10.0, -10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -9.0], [10.0, -9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -8.0], [10.0, -8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -7.0], [10.0, -7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -6.0], [10.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -5.0], [10.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -4.0], [10.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -3.0], [10.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -2.0], [10.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -1.0], [10.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 0.0], [10.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 1.0], [10.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 2.0], [10.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 3.0], [10.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 4.0], [10.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 5.0], [10.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 6.0], [10.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 7.0], [10.0, 7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 8.0], [10.0, 8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 9.0], [10.0, 9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -10.0], [-10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-9.0, -10.0], [-9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-8.0, -10.0], [-8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-7.0, -10.0], [-7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -10.0], [-6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -10.0], [-5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -10.0], [-4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -10.0], [-3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -10.0], [-2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -10.0], [-1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -10.0], [0.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -10.0], [1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -10.0], [2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -10.0], [3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -10.0], [4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -10.0], [5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -10.0], [6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[7.0, -10.0], [7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[8.0, -10.0], [8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[9.0, -10.0], [9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[10.0, -10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.1, 5.0], [-2.9, 5.0], {}], [[-3.0, 4.9], [-3.0, 5.1], {}], [[2.9, 5.0], [3.1, 5.0], {}], [[3.0, 4.9], [3.0, 5.1], {}], [[0.0, 11.0], [0.0, -10.5], {"subtype": "line"}]], "label": [[[-3.0, 5.0], "C", "above", {}], [[3.0, 5.0], "C'", "above", {}], [[0.0, -11.0], "(d)", {"subtype": "line"}]], "circle": [[[-3.0, 5.0], 4.0, {}], [[3.0, 5.0], 5.0, {}]]}
- 3.
{"init": {"range": [[-11.0, 11.0], [-11.0, 11.0]], "scale": [20, 20]}, "line": [[[-10.0, -10.0], [10.0, -10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -9.0], [10.0, -9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -8.0], [10.0, -8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -7.0], [10.0, -7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -6.0], [10.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -5.0], [10.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -4.0], [10.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -3.0], [10.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -2.0], [10.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -1.0], [10.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 0.0], [10.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 1.0], [10.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 2.0], [10.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 3.0], [10.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 4.0], [10.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 5.0], [10.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 6.0], [10.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 7.0], [10.0, 7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 8.0], [10.0, 8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 9.0], [10.0, 9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -10.0], [-10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-9.0, -10.0], [-9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-8.0, -10.0], [-8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-7.0, -10.0], [-7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -10.0], [-6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -10.0], [-5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -10.0], [-4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -10.0], [-3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -10.0], [-2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -10.0], [-1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -10.0], [0.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -10.0], [1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -10.0], [2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -10.0], [3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -10.0], [4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -10.0], [5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -10.0], [6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[7.0, -10.0], [7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[8.0, -10.0], [8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[9.0, -10.0], [9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[10.0, -10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.1, 5.0], [-2.9, 5.0], {}], [[-3.0, 4.9], [-3.0, 5.1], {}], [[-4.1, -5.0], [-3.9, -5.0], {}], [[-4.0, -5.1], [-4.0, -4.9], {}], [[11.0, 0.0], [-10.5, 0.0], {"subtype": "line"}]], "label": [[[-3.0, 5.0], "C", "above", {}], [[-4.0, -5.0], "C'", "above", {}], [[-11.0, 0.0], "(d)", {"subtype": "line"}]], "circle": [[[-3.0, 5.0], 4.0, {}], [[-4.0, -5.0], 4.0, {}]]}
- 4.
{"init": {"range": [[-11.0, 11.0], [-11.0, 11.0]], "scale": [20, 20]}, "line": [[[-10.0, -10.0], [10.0, -10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -9.0], [10.0, -9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -8.0], [10.0, -8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -7.0], [10.0, -7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -6.0], [10.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -5.0], [10.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -4.0], [10.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -3.0], [10.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -2.0], [10.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -1.0], [10.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 0.0], [10.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 1.0], [10.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 2.0], [10.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 3.0], [10.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 4.0], [10.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 5.0], [10.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 6.0], [10.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 7.0], [10.0, 7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 8.0], [10.0, 8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 9.0], [10.0, 9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -10.0], [-10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-9.0, -10.0], [-9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-8.0, -10.0], [-8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-7.0, -10.0], [-7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -10.0], [-6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -10.0], [-5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -10.0], [-4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -10.0], [-3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -10.0], [-2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -10.0], [-1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -10.0], [0.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -10.0], [1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -10.0], [2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -10.0], [3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -10.0], [4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -10.0], [5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -10.0], [6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[7.0, -10.0], [7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[8.0, -10.0], [8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[9.0, -10.0], [9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[10.0, -10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.1, 5.0], [-2.9, 5.0], {}], [[-3.0, 4.9], [-3.0, 5.1], {}], [[-6.1, 3.0], [-5.9, 3.0], {}], [[-6.0, 2.9], [-6.0, 3.1], {}], [[11.0, -11.0], [-10.646446609406727, 10.646446609406727], {"subtype": "line"}]], "label": [[[-3.0, 5.0], "C", "above", {}], [[-6.0, 3.0], "C'", "above", {}], [[-11.0, 11.0], "(d)", {"subtype": "line"}]], "circle": [[[-3.0, 5.0], 4.0, {}], [[-6.0, 3.0], 4.0, {}]]}
Kwyk vous donne accès à plus de 8 000 exercices auto-corrigés en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.
Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.
En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.
Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.
En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Exercices de Mathématiques : préparer les examens
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie