Symétrie axiale - 6e

Symétrie axiale

Exercice 1 : Tracer les symétriques de points

Construire les symétriques des points A, B, C et D par rapport à l'axe \((d)\).

Exercice 2 : Trouver les situations de symétrie axiale, où B est le symétrique de A par rapport à (d).

Parmi les figures suivantes, lesquelles correspondent à une situation de symétrie axiale, où B est le symétrique de A par rapport à (d).
  • A.
    {"init": {"range": [[-1, 6], [-1, 6]]}, "line": [[[0, 0], [0, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[1, 0], [1, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[2, 0], [2, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[3, 0], [3, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[4, 0], [4, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[5, 0], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 0], [5, 0], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1], [5, 1], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 2], [5, 2], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 3], [5, 3], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 4], [5, 4], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 5], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[4.0, 0], [0, 4.0], {"stroke-width": 2, "stroke": "#6495ED"}]], "label": [[[1, 1], "A", "above", {"color": "#6495ED"}], [[3, 1], "B", "above", {"color": "#6495ED"}], [[4.0, 0], "(d)", "above", {"color": "#6495ED"}]], "circle": [[[1, 1], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}], [[3, 1], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}]]}
  • B.
    {"init": {"range": [[-1, 6], [-1, 6]]}, "line": [[[0, 0], [0, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[1, 0], [1, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[2, 0], [2, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[3, 0], [3, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[4, 0], [4, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[5, 0], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 0], [5, 0], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1], [5, 1], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 2], [5, 2], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 3], [5, 3], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 4], [5, 4], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 5], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1.5], [5, 1.5], {"stroke-width": 2, "stroke": "#6495ED"}]], "label": [[[3, 2], "A", "above", {"color": "#6495ED"}], [[3, 1], "B", "above", {"color": "#6495ED"}], [[0, 1.5], "(d)", "above", {"color": "#6495ED"}]], "circle": [[[3, 2], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}], [[3, 1], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}]]}
  • C.
    {"init": {"range": [[-1, 6], [-1, 6]]}, "line": [[[0, 0], [0, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[1, 0], [1, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[2, 0], [2, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[3, 0], [3, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[4, 0], [4, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[5, 0], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 0], [5, 0], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1], [5, 1], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 2], [5, 2], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 3], [5, 3], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 4], [5, 4], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 5], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1.25], [5, 3.75], {"stroke-width": 2, "stroke": "#6495ED"}]], "label": [[[1, 3], "A", "above", {"color": "#6495ED"}], [[2, 3], "B", "above", {"color": "#6495ED"}], [[0, 1.25], "(d)", "above", {"color": "#6495ED"}]], "circle": [[[1, 3], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}], [[2, 3], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}]]}
  • D.
    {"init": {"range": [[-1, 6], [-1, 6]]}, "line": [[[0, 0], [0, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[1, 0], [1, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[2, 0], [2, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[3, 0], [3, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[4, 0], [4, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[5, 0], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 0], [5, 0], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1], [5, 1], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 2], [5, 2], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 3], [5, 3], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 4], [5, 4], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 5], [5, 5], {"stroke-width": 1, "stroke": "#bbb"}], [[0, 1.5], [5, 1.5], {"stroke-width": 2, "stroke": "#6495ED"}]], "label": [[[3, 2], "A", "above", {"color": "#6495ED"}], [[4, 1], "B", "above", {"color": "#6495ED"}], [[0, 1.5], "(d)", "above", {"color": "#6495ED"}]], "circle": [[[3, 2], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}], [[4, 1], 0.1, {"fill": "#6495ED", "stroke": "#6495ED"}]]}

Exercice 3 : Tracer les axes de symétrie d'une figure complexe

Tracer le ou les axes de symétrie de la figure suivante.

Exercice 4 : Tracer les symétries axiale d'une figure

Compléter le schéma afin que les droites \( (d1) \) et \( (d2) \) soient des axes de symétrie de la figure.
On n'ajoutera pas d'élément dans la partie contenant la figure initiale.

Exercice 5 : Tracer les axes de symétrie d'une figure simple

Tracer le ou les axes de symétrie de la figure suivante.

False